Protein and lipid oxidation of banked human erythrocytes:: Role of glutathione
In banked human erythrocytes (RBCs), biochemical and functional changes are accompanied with vesiculation and reduced in vivo survival. We hypothesized that some of these changes might have resulted from oxidative modification of membrane lipids, proteins, or both as a result of atrophy of the antio...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 1999-11, Vol.27 (9), p.1041-1049 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In banked human erythrocytes (RBCs), biochemical and functional changes are accompanied with vesiculation and reduced in vivo survival. We hypothesized that some of these changes might have resulted from oxidative modification of membrane lipids, proteins, or both as a result of atrophy of the antioxidant defense system(s). In banked RBCs, we observed a time-dependent increase in protein clustering, especially band 3; carbonyl modification of band 4.1; and malondialdehyde, a lipid peroxidation product. Examination of the antioxidative defense system showed a time-dependent decline in glutathione (GSH) concentration and glutathione-peroxidase (GSH-PX) activity, with a concomitant increase in extracellular GSH, cysteine, and homocysteine, and unchanged catalase activity. When subjected to acute oxidant stress by exposure to ferric/ascorbic acid or tert-butylhydroperoxide (tert-BHT), catalase activity showed a steeper decline compared with GSH-PX. The results demonstrate that GSH and GSH-PX appear to provide the primary antioxidant defense in stored RBCs, and their decline, concurrent with an increase in oxidative modifications of membrane lipids and proteins, may destabilize the membrane skeleton, thereby compromising RBC survival. |
---|---|
ISSN: | 0891-5849 1873-4596 |
DOI: | 10.1016/S0891-5849(99)00149-5 |