Experimental investigation of nasal airflow
The airway geometry of the nasal cavity is manifestly complex, and the manner in which it controls the airflow to accomplish its various physiological functions is not fully understood. Since the complex morphology and inaccessibility of the nasal passageways precludes detailed in-vivo measurements,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2008-05, Vol.222 (4), p.439-453 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The airway geometry of the nasal cavity is manifestly complex, and the manner in which it controls the airflow to accomplish its various physiological functions is not fully understood. Since the complex morphology and inaccessibility of the nasal passageways precludes detailed in-vivo measurements, either computational simulation or in-vitro experiments are needed to determine how anatomical form and function are related. The fabrication of a replica model of the nasal cavity, of a high optical clarity and derived from in-vivo scan data is described here, together with characteristics of the flow field investigated using particle image velocimetry (PIV) and flow visualization.
Flow visualization is shown to be a capable and convenient technique for identifying key phenomena. Specifically the emergence of the jet from the internal nasal valve into the main cavity, how it impacts on the middle turbinate, and the large enhancement of dispersion that accompanies the initial appearance of flow instability are revealed as particularly significant features. The findings from the visualization experiments are complemented by PIV imaging, which provides quantitative detail on the variations in velocity in different regions of the nasal cavity. These results demonstrate the effectiveness of the cavity geometry in partitioning the flow into high shear zones, which facilitate rapid heat transfer and humidification from the nasal mucosa, and slower zones affording greater residence times to facilitate olfactory sensing.
The experimental results not only provide a basis for comparison with other computational modelling but also demonstrate an alternative and flexible means to investigate complex flows, relevant to studies in different parts of the respiratory or cardiovascular systems. |
---|---|
ISSN: | 0954-4119 2041-3033 |
DOI: | 10.1243/09544119JEIM330 |