Psychoneuroimmunology--regulation of immunity at the systemic level
Innate and acquired immune reactions are controlled by their intrinsic regulatory mechanisms, ie. by an array of cytokines that mediate communication among cells of the immune system itself and with other cells and tissues, e. g. in areas of inflammation. In addition, the immune system is also subje...
Gespeichert in:
Veröffentlicht in: | Liječnički vjesnik 2008-03, Vol.130 (3-4), p.62-67 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | hrv |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Innate and acquired immune reactions are controlled by their intrinsic regulatory mechanisms, ie. by an array of cytokines that mediate communication among cells of the immune system itself and with other cells and tissues, e. g. in areas of inflammation. In addition, the immune system is also subjected to systemic regulation by the vegetative and endocrine systems since immune cells express receptors for neurotransmitters and hormones. Neuroendocrine signals may enhance or suppress the immune reaction, accelerate or slow it, but do not affect specificity. Various stressful factors, including the psychosocial ones, affect immunity. In turn, cytokines generated by the immune system influence hormonal secretion and central nervous system, producing specific behavioral changes (the "sickness behavior") accompanying infectious and inflammatory diseases. That includes somnolence, loss of apetite, depression or anxiety and decrease of cognitive abilities, attention and memory. Local immune systems in skin and mucosa are also subjected to systemic neuroendocrine regulation and possess intrinsic neuroregulatory networks as well. These mechanisms render skin and respiratory and digestive tracts responsive to various forms of stress. Examples are neurodermitis, asthma and ulcerative colitis. In children, the immune and the neuroendocrine systems are still developing, particularly in fetal, neonatal and early infant periods, and exposure to stressful experiences at that time may result in late consequences in the form of deficient immunity or greater risks for allergic or autoimmune reactions. Recognition of the participation of neuroendocrine mechanisms in regulation of immunity helps us understand alterations and disturbances of immune reactions under the influence of stressful factors but so far has not produced reliable therapeutic implications. Psychosocial interventions involving the child and its family may be useful. |
---|---|
ISSN: | 0024-3477 |