Changes in Glial Fibrillary Acidic Protein (GFAP) Immonureactivity Reflect Neuronal States

The astroglial marker, glial fibrillary acidic protein (GFAP) was investigated by immunohistochemistry in various brain areas in order to see its fluctuations in various functional states. Different neuronal states were either experimentally induced or studied under physiological conditions. To prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2008-08, Vol.33 (8), p.1643-1650
1. Verfasser: Hajos, Ferenc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The astroglial marker, glial fibrillary acidic protein (GFAP) was investigated by immunohistochemistry in various brain areas in order to see its fluctuations in various functional states. Different neuronal states were either experimentally induced or studied under physiological conditions. To produce experimental alterations the visual system was chosen as a model. Upon lesioning of the lateral geniculate body with the stereotaxic injection of ibotenic acid an increase in GFAP immunoreactivity could be induced in layers III and IV of the ipsilateral visual cortex where geniculo-cortical fibres terminate. Electron microscopy has revealed a synchronous degeneration of synaptic terminals and the hypertrophy of perisynaptic astrocyte processes. To study changes in the intact animal the effect of illumination was observed. In the lateral geniculate body the dorsal subnucleus was found immunonegative when studied at day and positive at night. Similar changes were observed in the suprachiasmatic nucleus. As to more generalized influences, the effect of gonadal steroids on the GFAP-reaction interpeduncular nucleus, an area not involved in hormonal regulatory mechanisms was studied. In males only castration could reduce constantly high GFAP immonoreactivity, whereas in females GFAP showed wide-range sexual cycle-related fluctuations. It was concluded that changes in GFAP immunoreactivity can indicate synaptic events whithin a circumscribed area of the brain.
ISSN:0364-3190
1573-6903
DOI:10.1007/s11064-008-9745-2