Structural stability of neoangiogenic intramyocardial microvessels supports functional recovery in chronic ischemic myocardium
Abstract We hypothesize that combining angiopoietin-1 (ANG-1) or ANG-2 with vascular endothelial growth factor (VEGF) improves myocardial perfusion and contractile function by modulating vascular adaptation of neoangiogenic microvessels in a chronic ischemic swine model. Four weeks after occlusion o...
Gespeichert in:
Veröffentlicht in: | Journal of molecular and cellular cardiology 2008-07, Vol.45 (1), p.70-80 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract We hypothesize that combining angiopoietin-1 (ANG-1) or ANG-2 with vascular endothelial growth factor (VEGF) improves myocardial perfusion and contractile function by modulating vascular adaptation of neoangiogenic microvessels in a chronic ischemic swine model. Four weeks after occlusion of the left circumflex coronary artery (LCx), animals were injected with AdVEGF165 ( n = 6), AdVEGF165 +AdANG-1 ( n = 6), AdVEGF165 +AdANG-2 ( n = 6) or control vector ( n = 5) into the left ventricular posterolateral wall. Regional perfusion by fluorescent microspheres and segmental myocardial tissue velocity by tissue Doppler imaging (TDI) were assessed at baseline, 4 weeks post occlusion and 4 weeks post therapy. Despite similar vascular growth following VEGF+ANG-1 and VEGF+ANG-2 treatments, transmural myocardial contractility improved only when VEGF was paired with ANG-1. In contrast, regional systolic function deteriorated uniformly across subepicardial, mid-myocardial and subendocardial segments in VEGF and VEGF+ANG-2 treated groups. Contractile improvement was associated with enhanced vascular stability through augmented arteriole formation, tight structural integration between VE-cadherin and β-catenin at endothelial junctions and improved cross-talk between endothelium and myocardium. Structural stability of developing intramyocardial microvessels contributes to systolic function during ischemic neovascularization. Coordinated regulation of angiogenic revascularization that supports vascular stability is a key aspect in improving therapeutic outcomes in ischemic myocardium. |
---|---|
ISSN: | 0022-2828 1095-8584 |
DOI: | 10.1016/j.yjmcc.2008.04.007 |