Dispersive pulse compression in hollow-core photonic bandgap fibers

Compression of linearly chirped picosecond pulses in hollow-core photonic bandgap fibers is investigated numerically. The modal properties of the fibers are modeled using the finite-element technique, whereas nonlinear propagation is described by a generalized nonlinear Schrödinger equation, which a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2008-06, Vol.16 (13), p.9628-9644
Hauptverfasser: Laegsgaard, J, Roberts, P J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Compression of linearly chirped picosecond pulses in hollow-core photonic bandgap fibers is investigated numerically. The modal properties of the fibers are modeled using the finite-element technique, whereas nonlinear propagation is described by a generalized nonlinear Schrödinger equation, which accounts both for the composite nature of the nonlinearity and the strong mode profile dispersion. Power limits for compression with more than 90% of the pulse energy in the main peak of the compressed pulse are investigated as a function of fiber design, and the temporal and spectral widths of the input pulse. The validity of approximate scaling rules is investigated, and figures of merit for fiber design are discussed.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.16.009628