Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset Type I diabetes mellitus
Type I (insulin-dependent) diabetes results mainly from T-cell-mediated autoimmune destruction of pancreatic beta cells. Cytotoxic T lymphocytes destroy target cells via a perforin-based or Fas-based mechanism. Our previous study indicated that the Fas-Fas ligand (FasL) pathway is required for the d...
Gespeichert in:
Veröffentlicht in: | Diabetologia 1999-11, Vol.42 (11), p.1332-1340 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Type I (insulin-dependent) diabetes results mainly from T-cell-mediated autoimmune destruction of pancreatic beta cells. Cytotoxic T lymphocytes destroy target cells via a perforin-based or Fas-based mechanism. Our previous study indicated that the Fas-Fas ligand (FasL) pathway is required for the development of autoimmune diabetes in the NOD mouse. We now investigated whether or not the Fas-FasL system is involved in the beta-cell destruction in human Type I diabetes.
We immunohistochemically analysed pancreas biopsy specimens of 13 recent-onset patients.
Pancreatic islets were identified but showed various degrees of reduction in beta-cell volume in all patients. Out of 13 patients 6 had insulitis. In these 6 patients Fas was expressed in both the islets and infiltrating cells but not in either cell type in the 7 other patients without insulitis. Double immunostaining showed that Fas was positive in 92.2 to 97.7 % of beta cells but only in 17.6 to 46.7 % of alpha cells in Fas-positive, insulin-remaining islets. We found FasL was expressed exclusively in islet-infiltrating cells in patients with insulitis. Double immunostaining revealed that the most prevalent phenotype of FasL-positive cells was CD8, which was followed by macrophages and CD4.
The interaction between Fas on beta cells and FasL on infiltrating cells might trigger selective apoptotic beta-cell death in inflamed islets, leading to immune-mediated Type I diabetes. [Diabetologia (1999) 42: 1332-1340] |
---|---|
ISSN: | 0012-186X 1432-0428 |
DOI: | 10.1007/s001250051446 |