Inhibition of Endothelial Nitric Oxide Synthase Activity by Proline-Rich Tyrosine Kinase 2 in Response to Fluid Shear Stress and Insulin
In native and primary cultures of endothelial cells, fluid shear stress elicits the tyrosine phosphorylation of the endothelial NO synthase (eNOS), however, the consequences of this modification on enzyme activity are unclear. We found that fluid shear stress induces the association of eNOS with the...
Gespeichert in:
Veröffentlicht in: | Circulation research 2008-06, Vol.102 (12), p.1520-1528 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In native and primary cultures of endothelial cells, fluid shear stress elicits the tyrosine phosphorylation of the endothelial NO synthase (eNOS), however, the consequences of this modification on enzyme activity are unclear. We found that fluid shear stress induces the association of eNOS with the proline-rich tyrosine kinase 2 (PYK2) in endothelial cells and that the eNOS immunoprecipitated from eNOS- and PYK2-overexpressing HEK293 cells was tyrosine-phosphorylated on Tyr657. In mouse carotid arteries, the overexpression of wild-type PYK2, but not a dominant-negative PYK2, decreased eNOS activity (≈50%), whereas in murine lung endothelial cells, the downregulation of PYK2 (small interfering RNA) increased ionomycin-induced NO production. Mutation of Tyr657 to the phosphomimetic residues aspartate (D) or glutamate (E) abolished enzyme activity, whereas a nonphosphorylatable mutant (phenylalanine [F]) showed activity comparable to the wild-type enzyme. Moreover, normal flow-induced vasodilatation was apparent in carotid arteries from eNOS mice overexpressing either the wild-type eNOS or the Y657F mutant, whereas no flow-induced vasodilatation was apparent in arteries expressing the Y657E eNOS mutant. Insulin also activated PYK2 and stimulated eNOS in endothelial cells expressing the Y657F mutant but not wild-type eNOS. These data indicate that PYK2 mediates the tyrosine phosphorylation of eNOS on Tyr657 in response to fluid shear stress and insulin stimulation and that this modification attenuates the activity of the enzyme. The PYK2-dependent inhibition of NO production may serve to keep eNOS activity low and limit the detrimental consequences of maintained high NO output, ie, the generation of peroxynitrite. |
---|---|
ISSN: | 0009-7330 1524-4571 |
DOI: | 10.1161/CIRCRESAHA.108.172072 |