A molecular spectroscopic view of surface plasmon enhanced resonance Raman scattering

The enhancement of resonance Raman scattering by coupling to the plasmon resonance of a metal nanoparticle is developed by treating the molecule-metal interaction as transition dipole coupling between the molecular electronic transition and the much stronger optical transition of the nanoparticle. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2008-06, Vol.128 (22), p.224702-224702-8
1. Verfasser: Kelley, Anne Myers
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The enhancement of resonance Raman scattering by coupling to the plasmon resonance of a metal nanoparticle is developed by treating the molecule-metal interaction as transition dipole coupling between the molecular electronic transition and the much stronger optical transition of the nanoparticle. A density matrix treatment accounts for coupling of both transitions to the electromagnetic field, near-resonant energy transfer between the molecule-excited and nanoparticle-excited states, and dephasing processes. This fully quantum mechanical approach reproduces the interference effects observed in extinction spectra of J -aggregated dyes adsorbed to metal nanoparticles and makes testable predictions for surface-enhanced resonance Raman excitation profiles.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.2931540