Effect of microdialysis perfusion of 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol in the perifornical hypothalamus on sleep–wakefulness: Role of δ-subunit containing extrasynaptic GABAA receptors

Abstract Gaboxadol or 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP) is a selective agonist for the δ-subunit containing extrasynaptic GABAA receptors that will soon enter the U.S. market as a sleep aid [Winsky-Sommerer R, Vyazovskiy VV, Homanics GE, Tobler I (2007) The EEG effects of THIP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2008-05, Vol.153 (3), p.551-555
Hauptverfasser: Thakkar, M.M, Winston, S, McCarley, R.W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Gaboxadol or 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP) is a selective agonist for the δ-subunit containing extrasynaptic GABAA receptors that will soon enter the U.S. market as a sleep aid [Winsky-Sommerer R, Vyazovskiy VV, Homanics GE, Tobler I (2007) The EEG effects of THIP (gaboxadol) on sleep and waking are mediated by the GABA(A)delta-subunit-containing receptors. Eur J Neurosci 25:1893–1899]. Numerous studies have shown that systemic administration of THIP reduces wakefulness and increases sleep both in humans and rats [ Lancel M, Langebartels A (2000) Gamma-aminobutyric acid(A) (GABA(A)) agonist 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol persistently increases sleep maintenance and intensity during chronic administration to rats. J Pharmacol Exp Ther 293:1084–1090; Walsh JK, Deacon S, Dijk DJ, Lundahl J (2007) The selective extrasynaptic GABAA agonist, gaboxadol, improves traditional hypnotic efficacy measures and enhances slow wave activity in a model of transient insomnia. Sleep 30:593–602]. However, it is yet unclear where in the brain THIP acts to promote sleep. Since the perifornical lateral hypothalamus (PFH) contains orexin neurons and orexin neurons are critical for maintenance of arousal [McCarley RW (2007) Neurobiology of rapid eye movement (REM) and NREM sleep. Sleep Med 8:302–330], we hypothesized that THIP may act on PFH neurons to promote sleep. To test our hypothesis, we used reverse microdialysis to perfuse THIP unilaterally into the PFH and studied its effects on sleep–wakefulness during the light period in freely behaving rats. Microdialysis perfusion of THIP (100 μM) into the PFH produced a significant reduction in wakefulness with a concomitant increase in non-rapid eye movement or slow wave sleep as compared with artificial cerebrospinal fluid perfusion. REM sleep was unaffected. This is the first study implicating the δ-subunit containing extrasynaptic GABAA receptors in PFH in control of sleep–wakefulness in freely behaving rats.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2008.02.053