The direct role of vitamin D on bone homeostasis

Vitamin D requires two metabolic conversions, 25-hydroxylation in the liver and 1α-hydroxylation in the kidney, before its hormonal form, 1,25-dihydroxyvitamin D [1,25-(OH) 2D], can bind to the vitamin D receptor (VDR) to modulate gene transcription and regulate mineral ion homeostasis. The receptor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 2008-05, Vol.473 (2), p.225-230
1. Verfasser: St-Arnaud, René
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vitamin D requires two metabolic conversions, 25-hydroxylation in the liver and 1α-hydroxylation in the kidney, before its hormonal form, 1,25-dihydroxyvitamin D [1,25-(OH) 2D], can bind to the vitamin D receptor (VDR) to modulate gene transcription and regulate mineral ion homeostasis. The receptor and metabolic enzymes are expressed in many tissues, however, which has long suggested that the vitamin D hormone could act in an autocrine, paracrine, or intracrine fashion to affect the biology of non-classical target tissues. Strong support for this model has been obtained for Toll-like receptor-mediated innate immunity in macrophages, for example. The classical view is that vitamin D exerts its effects on bone indirectly via control of calcium and phosphate homeostasis, despite expression of cyp27b1, the 25-hydroxyvitamin D-1α-hydroxylase, and the VDR in osteoblasts and chondrocytes. Recent molecular genetic studies have revealed direct, but non-essential roles for 1,25-(OH) 2D in growth plate chondrocytes. Specific inactivation of the VDR in collagen type II-expressing chondrocytes leads to reduced RANKL expression and delayed osteoclastogenesis, which causes a transient increase in bone volume at the primary spongiosa. Chondrocyte-specific VDR-ablated mice also show reduced circulating levels of FGF23 and thus elevated serum phosphate concentrations. The mechanisms remain to be completely determined but appear to involve a 1,25-(OH) 2D-induced secreted factor from chondrocytes that affects FGF23 production by neighboring osteoblasts. The phenotype of additional mutant mice models, including chondrocyte-specific inactivation or overexpression of cyp27b1, is being analyzed to provide further support for these results that show autocrine and paracrine roles for 1,25-(OH) 2D during endochondral bone development.
ISSN:0003-9861
1096-0384
DOI:10.1016/j.abb.2008.03.038