Excretion patterns of fluid and different sized particle passage markers in banteng (Bos javanicus) and pygmy hippopotamus (Hexaprotodon liberiensis): two functionally different foregut fermenters

Processing of ingesta particles plays a crucial role in the digestive physiology of herbivores. In the ruminant forestomach different sized particles are stratified into a small and a large particle fraction and only the latter is regurgitated and remasticated to smaller, easier-to-digest particles....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2008-05, Vol.150 (1), p.32-39
Hauptverfasser: Schwarm, Angela, Ortmann, Sylvia, Wolf, Christian, Streich, W Jürgen, Clauss, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Processing of ingesta particles plays a crucial role in the digestive physiology of herbivores. In the ruminant forestomach different sized particles are stratified into a small and a large particle fraction and only the latter is regurgitated and remasticated to smaller, easier-to-digest particles. In contrast, it has been suggested that in non-ruminating foregut fermenters, such as hippopotamuses, larger particles should be selectively excreted since they tend to be digested at a slower rate and hence can be considered intake-limiting bulk. In our study we determined the mean retention time (MRT) of fluids and different sized particles (2 mm and 10 mm) in six pygmy hippos (Hexaprotodon liberiensis) and six banteng (Bos javanicus) on a diet of fresh grass at two intake levels. We used cobalt ethylendiamintetraacetate (Co-EDTA) as fluid and chromium (Cr)-mordanted fibre (2 mm) and cerium (Ce)-mordanted fibre (10 mm) as particle markers, mixed in the food. Average total tract MRT for fluid, small and large particles at the high intake level was 32, 76 and 73 h in pygmy hippos and 25, 56 and 60 h in banteng, and at the low intake level 39, 109, and 105 h in pygmy hippos and 22, 51 and 58 h in banteng, respectively. In accordance with the prediction, large particles moved faster than, or as fast as the small particles, through the gut of pygmy hippos. In contrast, large particles were excreted slower than the small particles in the ruminant of this study, the banteng. Pygmy hippos had longer retention times than the banteng, which probably compensate for the less efficient particle size reduction. Although the results were not as distinct as expected, most likely due to the fact that ingestive mastication of the larger particle marker could not be prevented, they confirm our hypothesis of a functional difference in selective particle retention between ruminating and non-ruminating foregut fermenters.
ISSN:1095-6433
1531-4332
DOI:10.1016/j.cbpa.2008.02.022