Thermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structures
The stability of subsurface 3d transition metals (3d represents Ni, Co, Fe, Mn, Cr, V, and Ti) in Pt(111) and Pt(100) was examined in vacuum and with 0.5 ML atomic oxygen by a combined experimental and density functional theory (DFT) approach. DFT was used to predict the trends in the binding energy...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2008-04, Vol.128 (16), p.164703-164703 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The stability of subsurface 3d transition metals (3d represents Ni, Co, Fe, Mn, Cr, V, and Ti) in Pt(111) and Pt(100) was examined in vacuum and with 0.5 ML atomic oxygen by a combined experimental and density functional theory (DFT) approach. DFT was used to predict the trends in the binding energy of oxygen and in the stability of 3d metals to remain in the subsurface layer. DFT calculations predicted that for both (111) and (100) crystal planes the subsurface Pt-3d-Pt configurations were thermodynamically preferred in vacuum and that the surface 3d-Pt-Pt configurations were preferred with the adsorption of 0.5 ML atomic oxygen. Experimentally, the DFT predictions were verified by using Auger electron spectroscopy to monitor the segregation of Ni and Co in Pt-3d-Pt structures on polycrystalline Pt foil, composed of mainly (111) and (100) facets. The activation barrier for the oxygen-induced segregation of Ni was found to be 17+/-1 kcal/mol attributed to the Pt(111) areas and 27+/-1 kcal/mol attributed to the Pt(100) areas of the Pt foil. For Pt-Co-Pt, the activation barrier was found to be 10+/-1 kcal/mol and was attributed to the Pt(111) areas of the Pt foil. The Bronsted-Evans-Polanyi relationship was utilized to predict the activation barriers for segregation of the other Pt-3d-Pt(111) and Pt-3d-Pt(100) systems. These results are further discussed in connection to the activity and stability for cathode bimetallic electrocatalysts for proton exchange membrane fuel cells. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2900962 |