New paradigm in protein function prediction for large scale omics analysis

Biological interpretation of large scale omics data, such as protein-protein interaction data and microarray gene expression data, requires that the function of many genes in a data set is annotated or predicted. Here the predicted function for a gene does not necessarily have to be a detailed bioch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular bioSystems 2008-01, Vol.4 (3), p.223-231
Hauptverfasser: Hawkins, Troy, Chitale, Meghana, Kihara, Daisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biological interpretation of large scale omics data, such as protein-protein interaction data and microarray gene expression data, requires that the function of many genes in a data set is annotated or predicted. Here the predicted function for a gene does not necessarily have to be a detailed biochemical function; a broad class of function, or low-resolution function, may be sufficient to understand why a set of genes shows the observed expression pattern or interaction pattern. In this Highlight, we focus on two recent approaches for function prediction which aim to provide large coverage in function prediction, namely omics data driven approaches and a thorough data mining approach on homology search results.
ISSN:1742-206X
1742-2051
DOI:10.1039/b718229e