Mechanism of Self-Sterility in a Hermaphroditic Chordate

Hermaphroditic organisms avoid inbreeding by a system of self-incompatibility (SI). A primitive chordate (ascidian) Ciona intestinalis is an example of such an organism, but the molecular mechanism underlying its SI system is not known. Here, we show that the SI system is governed by two gene loci t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2008-04, Vol.320 (5875), p.548-550
Hauptverfasser: Harada, Yoshito, Takagaki, Yuhei, Sunagawa, Masahiko, Saito, Takako, Yamada, Lixy, Taniguchi, Hisaaki, Shoguchi, Eiichi, Sawada, Hitoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hermaphroditic organisms avoid inbreeding by a system of self-incompatibility (SI). A primitive chordate (ascidian) Ciona intestinalis is an example of such an organism, but the molecular mechanism underlying its SI system is not known. Here, we show that the SI system is governed by two gene loci that act cooperatively. Each locus contains a tightly linked pair of polycystin 1-related receptor (s-Themis) and fibrinogen-like ligand (v-Themis) genes, the latter of which is located in the first intron of s-Themis but transcribed in the opposite direction. These genes may encode male- and female-side self-recognition molecules. The SI system of C. intestinalis has a similar framework to that of flowering plants but utilizing different molecules.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1152488