Caveolin-1 alters Ca(2+) signal duration through specific interaction with the G alpha q family of G proteins
Caveolae are membrane domains having caveolin-1 (Cav1) as their main structural component. Here, we determined whether Cav1 affects Ca(2+) signaling through the Galpha(q)-phospholipase-Cbeta (PLCbeta) pathway using Fischer rat thyroid cells that lack Cav1 (FRTcav(-)) and a sister line that forms cav...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2008-05, Vol.121 (Pt 9), p.1363 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Caveolae are membrane domains having caveolin-1 (Cav1) as their main structural component. Here, we determined whether Cav1 affects Ca(2+) signaling through the Galpha(q)-phospholipase-Cbeta (PLCbeta) pathway using Fischer rat thyroid cells that lack Cav1 (FRTcav(-)) and a sister line that forms caveolae-like domains due to stable transfection with Cav1 (FRTcav(+)). In the resting state, we found that eCFP-Gbetagamma and Galpha(q)-eYFP are similarly associated in both cell lines by Forster resonance energy transfer (FRET). Upon stimulation, the amount of FRET between Galpha(q)-eYFP and eCFP-Gbetagamma remains high in FRTcav(-) cells, but decreases almost completely in FRTcav(+) cells, suggesting that Cav1 is increasing the separation between Galpha(q)-Gbetagamma subunits. In FRTcav(-) cells overexpressing PLCbeta, a rapid recovery of Ca(2+) is observed after stimulation. However, FRTcav(+) cells show a sustained level of elevated Ca(2+). FRET and colocalization show specific interactions between Galpha(q) and Cav1 that increase upon stimulation. Fluorescence correlation spectroscopy studies show that the mobility of Galpha(q)-eGFP is unaffected by activation in either cell type. The mobility of eGFP-Gbetagamma remains slow in FRTcav(-) cells but increases in FRTcav(+) cells. Together, our data suggest that, upon stimulation, Galpha(q)(GTP) switches from having strong interactions with Gbetagamma to Cav1, thereby releasing Gbetagamma. This prolongs the recombination time for the heterotrimer, thus causing a sustained Ca(2+) signal. |
---|---|
ISSN: | 0021-9533 |
DOI: | 10.1242/jcs.020081 |