Caveolin-1 alters Ca(2+) signal duration through specific interaction with the G alpha q family of G proteins

Caveolae are membrane domains having caveolin-1 (Cav1) as their main structural component. Here, we determined whether Cav1 affects Ca(2+) signaling through the Galpha(q)-phospholipase-Cbeta (PLCbeta) pathway using Fischer rat thyroid cells that lack Cav1 (FRTcav(-)) and a sister line that forms cav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2008-05, Vol.121 (Pt 9), p.1363
Hauptverfasser: Sengupta, Parijat, Philip, Finly, Scarlata, Suzanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Caveolae are membrane domains having caveolin-1 (Cav1) as their main structural component. Here, we determined whether Cav1 affects Ca(2+) signaling through the Galpha(q)-phospholipase-Cbeta (PLCbeta) pathway using Fischer rat thyroid cells that lack Cav1 (FRTcav(-)) and a sister line that forms caveolae-like domains due to stable transfection with Cav1 (FRTcav(+)). In the resting state, we found that eCFP-Gbetagamma and Galpha(q)-eYFP are similarly associated in both cell lines by Forster resonance energy transfer (FRET). Upon stimulation, the amount of FRET between Galpha(q)-eYFP and eCFP-Gbetagamma remains high in FRTcav(-) cells, but decreases almost completely in FRTcav(+) cells, suggesting that Cav1 is increasing the separation between Galpha(q)-Gbetagamma subunits. In FRTcav(-) cells overexpressing PLCbeta, a rapid recovery of Ca(2+) is observed after stimulation. However, FRTcav(+) cells show a sustained level of elevated Ca(2+). FRET and colocalization show specific interactions between Galpha(q) and Cav1 that increase upon stimulation. Fluorescence correlation spectroscopy studies show that the mobility of Galpha(q)-eGFP is unaffected by activation in either cell type. The mobility of eGFP-Gbetagamma remains slow in FRTcav(-) cells but increases in FRTcav(+) cells. Together, our data suggest that, upon stimulation, Galpha(q)(GTP) switches from having strong interactions with Gbetagamma to Cav1, thereby releasing Gbetagamma. This prolongs the recombination time for the heterotrimer, thus causing a sustained Ca(2+) signal.
ISSN:0021-9533
DOI:10.1242/jcs.020081