Involvement of monoamines and proinflammatory cytokines in mediating the anti-stress effects of Panax quinquefolium

Panax quinquefolium (PQ) is well acclaimed in literature for its effects on central and peripheral nervous system. The present study explores the effects of PQ on stress induced changes of corticosterone level in plasma, monoamines (NA, DA and 5-HT) and interleukin (IL-2 and IL-6) levels in cortex a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2008-05, Vol.117 (2), p.257-262
Hauptverfasser: Rasheed, Naila, Tyagi, Ethika, Ahmad, Ausaf, Siripurapu, Kiran Babu, Lahiri, Shawon, Shukla, Rakesh, Palit, Gautam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Panax quinquefolium (PQ) is well acclaimed in literature for its effects on central and peripheral nervous system. The present study explores the effects of PQ on stress induced changes of corticosterone level in plasma, monoamines (NA, DA and 5-HT) and interleukin (IL-2 and IL-6) levels in cortex and hippocampus regions of brain and also indicate their possible roles in modulating stress. Mice subjected to chronic unpredictable stress (CUS, for 7 days) showed significant increase in plasma corticosterone level and depletion of noradrenaline (NA), dopamine (DA) and 5-hydroxytryptamine (5-HT) levels in cortex and hippocampal regions along with an increased level of IL-2 and IL-6 in the same areas. Aqueous suspension of PQ was administered daily at a dose of 100 and 200 mg/kg p.o. prior to the stress regimen and its effects on selected stress markers in plasma and brain was evaluated. PQ at a dose of 200 mg/kg p.o. was found to be effective in normalizing the CUS induced elevation of plasma corticosterone and IL-2, IL-6 levels in brain. Moreover, it was significantly effective in reinstating the CUS induced depletion of NA, DA and 5-HT in hippocampus, while NA and 5-HT in cortex of brain. However, PQ at a dose of 100 mg/kg p.o. was found ineffective in regulating any of these CUS induced changes. Present study provides an insight into the possible role of PQ on hyperactive HPA axis in the regulation of immediate stress effectors like corticosterone, cytokines and brain monoamines. In this study, PQ has emerged as a potential therapeutic in the cure of stress related disorders and needs to be evaluated in clinical studies to ascertain its efficacy.
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2008.01.035