Adenosine A2A receptors inhibit the conductance of NMDA receptor channels in rat neostriatal neurons

Whole-cell patch clamp experiments were carried out in rat striatal brain slices. In a subset of striatal neurons (70-80%), NMDA-induced inward currents were inhibited by the adenosine A2A receptor selective agonist CGS 21680. The non-selective adenosine receptor antagonist 8-(p-sulphophenyl)-theoph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Amino acids 1998-03, Vol.14 (1-3), p.33-39
Hauptverfasser: Nörenberg, W, Wirkner, K, Assmann, H, Richter, M, Illes, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Whole-cell patch clamp experiments were carried out in rat striatal brain slices. In a subset of striatal neurons (70-80%), NMDA-induced inward currents were inhibited by the adenosine A2A receptor selective agonist CGS 21680. The non-selective adenosine receptor antagonist 8-(p-sulphophenyl)-theophylline and the A2A receptor selective antagonist 8-(3-chlorostyryl)caffeine abolished the inhibitory action of CGS 21680. Intracellular GDP-beta-S, which is known to prevent G protein-mediated reactions, also eliminated the effect of CGS 21680. Extracellular dibutyryl cAMP, a membrane permeable analogue of cAMP, and intracellular Sp-cAMPS, an activator of cAMP-dependent protein kinases (PKA), both abolished the CGS 21680-induced inhibition. By contrast, Rp-cAMPS and PKI 14-24 amide, two inhibitors of PKA had no effect. Intracellular U-73122 (a phospholipase C inhibitor) and heparin (an inositoltriphosphate antagonist) prevented the effect of CGS 21680. Finally, a more efficient buffering of intracellular Ca2+ by a substitution of EGTA (11 mM) by BAPTA (5.5 mM) acted like U-73122 or heparin. Hence, A2A receptors appear to negatively modulate NMDA receptor channel conductance via the phospholipase C/inositoltriphosphate/Ca2+ pathway rather than the adenylate cyclase/PKA pathway.
ISSN:0939-4451
1438-2199
DOI:10.1007/BF01345239