Succinate dehydrogenase gene arrangement and expression in Anaplasma phagocytophilum

DNA sequencing of the region directly downstream of the Anaplasma phagocytophilum (strain MRK) 16S rRNA gene identified homologues of sdhC and sdhD; however, further sequencing by gene walking failed to identify additional sdh gene homologues. The sequence downstream of sdhD identified a partial gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene 2008-05, Vol.414 (1), p.41-48
Hauptverfasser: Massung, Robert F., Hiratzka, Shannon L., Brayton, Kelly A., Palmer, Guy H., Lee, Kemba N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA sequencing of the region directly downstream of the Anaplasma phagocytophilum (strain MRK) 16S rRNA gene identified homologues of sdhC and sdhD; however, further sequencing by gene walking failed to identify additional sdh gene homologues. The sequence downstream of sdhD identified a partial gene, pep1, predicted to encode a protein > 35.3 kDa with 26.3% identity to a hypothetical Ehrlichia canis protein with no known function. The recently completed sequence of the A. phagocytophilum genome confirmed our findings and indicated that the sdhA and sdhB genes are duplicated in a tandem orientation, and located distant from the sdhC and sdhD genes. The expression of the A. phagocytophilum 16S rRNA, sdhC, and sdhD genes was examined by reverse transcriptase PCR which showed that these three genes are expressed as an operon. The pep1 gene was expressed independent of the 16S- sdhCD operon from a promoter between sdhD and pep1. Further analysis of the sdhA and sdhB genes suggested the tandem duplication of the genes in conserved and may be unique to the species A. phagocytophilum. While the conservation of the A. phagocytophilum Sdh proteins, including the residues required for heme- and quinone-binding by SdhC and SdhD, suggests these subunits form an active enzymatic complex, the unusual genomic arrangement and expression pattern of these genes support previous studies (rRNA, ftsZ) indicating that gene rearrangement and operon fragmentation are common in the genomes of Anaplasma and other obligate intracellular bacteria. OMB disclaimer: the findings and conclusions in this report are those of the authors and do not necessarily represent the views of the CDC or the Department of Health and Human Services.
ISSN:0378-1119
1879-0038
DOI:10.1016/j.gene.2008.02.005