Assessment of performance of the general purpose polarizable force field QMPFF3 in condensed phase
The recently introduced force field (FF) QMPFF3 is thoroughly validated in gas, liquid, and solid phases. For the first time, it is demonstrated that a physically well-grounded general purpose FF fitted exclusively to a comprehensive set of high level vacuum quantum mechanical data applied as it is...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2008-06, Vol.29 (8), p.1242-1249 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The recently introduced force field (FF) QMPFF3 is thoroughly validated in gas, liquid, and solid phases. For the first time, it is demonstrated that a physically well-grounded general purpose FF fitted exclusively to a comprehensive set of high level vacuum quantum mechanical data applied as it is to simulation of condensed phase provides high transferability for a wide range of chemical compounds. QMPFF3 demonstrates accuracy comparable with that of the FFs explicitly fitted to condensed phase data, but due to high transferability it is expected to be successful in simulating large molecular complexes. |
---|---|
ISSN: | 0192-8651 1096-987X |
DOI: | 10.1002/jcc.20884 |