A mechanism for Ikaros regulation of human globin gene switching

Summary The human β globin locus consists of an upstream LCR and functional genes arranged sequentially in the order of their expression during development: 5′‐HBE1, HBG2, HBG1, HBD, HBB‐3′. Haemoglobin switching entails the successive recruitment of these genes into an active chromatin hub (ACH). H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of haematology 2008-05, Vol.141 (3), p.398-406
Hauptverfasser: Keys, Janelle R., Tallack, Michael R., Zhan, Ye, Papathanasiou, Peter, Goodnow, Christopher C., Gaensler, Karin M., Crossley, Merlin, Dekker, Job, Perkins, Andrew C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary The human β globin locus consists of an upstream LCR and functional genes arranged sequentially in the order of their expression during development: 5′‐HBE1, HBG2, HBG1, HBD, HBB‐3′. Haemoglobin switching entails the successive recruitment of these genes into an active chromatin hub (ACH). Here we show that the transcription factor Ikaros plays a major role in the formation of the β‐globin ACH, and in haemoglobin switching. In Plastic mice, where the DNA‐binding region of Ikaros is disrupted by a point mutation, there is concomitant marked down‐regulation of HBB, and up‐regulation of HBG expression. We show for the first time Ikaros and its family member Eos, bind to critical cis elements implicated in haemoglobin switching and deletional hereditary persistence of fetal haemoglobin (HPFH). Chromatin conformation capture (3C) data demonstrated that Ikaros facilitates long‐distance DNA looping between the LCR and a region upstream of HBD. This study provides new insights into the mechanism of stage‐specific assembly of the β‐globin ACH, and HPFH.
ISSN:0007-1048
1365-2141
DOI:10.1111/j.1365-2141.2008.07065.x