Suppression of Microtubule Dynamics by Binding of Cemadotin to Tubulin:  Possible Mechanism for Its Antitumor Action

Cemadotin (LU103793) (NSC D-669356) is a water-soluble synthetic analogue of dolastatin 15 that inhibits cell proliferation in vitro and the growth of human tumor xenografts. Cemadotin is in phase II clinical trials as a promising cancer chemotherapeutic agent. The drug blocks cells at mitosis. Its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1998-12, Vol.37 (50), p.17571-17578
Hauptverfasser: Jordan, Mary Ann, Walker, Deborah, de Arruda, Monika, Barlozzari, Teresa, Panda, Dulal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cemadotin (LU103793) (NSC D-669356) is a water-soluble synthetic analogue of dolastatin 15 that inhibits cell proliferation in vitro and the growth of human tumor xenografts. Cemadotin is in phase II clinical trials as a promising cancer chemotherapeutic agent. The drug blocks cells at mitosis. Its primary mode of action has been unclear but is believed to involve an action on microtubules. We have found that cemadotin binds to tubulin and strongly suppresses microtubule dynamics. Scatchard analysis of cemadotin binding to tubulin indicated that there are two affinity classes of cemadotin-binding sites with K d values of 19.4 μM and 136 μM. Cemadotin did not inhibit the binding of vinblastine to tubulin, and, conversely, vinblastine did not inhibit the binding of cemadotin to tubulin. By quantitative video microscopy of individual microtubules, we found that cemadotin strongly suppressed dynamic instability of microtubules assembled to steady state using bovine brain tubulin devoid of microtubule-associated proteins. It reduced the rate and extent of growing and shortening, increased the rescue frequency, and increased the percentage of time the microtubules spent in an attenuated or paused state, neither growing nor shortening detectably. At the lowest effective cemadotin concentrations, dynamics were suppressed in the absence of significant microtubule depolymerization. The results suggest that cemadotin exerts its antitumor activity by suppressing spindle microtubule dynamics through a distinct molecular mechanism by binding at a novel site in tubulin.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi9817414