Dielectric properties of honeydew melons and correlation with quality

Dielectric properties of three honeydew melon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and impedance analyzer over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of the melon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of microwave power and electromagnetic energy 2007, Vol.41 (2), p.48-58
Hauptverfasser: Guo, Wen-chuan, Nelson, Stuart O, Trabelsi, Samir, Kays, Stanley J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dielectric properties of three honeydew melon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and impedance analyzer over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of the melons and also on tissue samples from the edible internal tissue. Moisture content and soluble solids content (SSC) were measured for internal tissue samples, and SSC (sweetness) was used as the quality factor for correlation with the dielectric properties. Individual dielectric constant and loss factor correlations with SSC were low, but a high correlation was obtained between the SSC and permittivity from a complex-plane plot of dielectric constant and loss factor, each divided by SSC, for both the external surface and internal tissue measurements. However, SSC prediction from the dielectric properties by these relationships was not as high as expected. Permittivity data (dielectric constant and loss factor) for the melons are presented graphically to show their relationships with frequency for external surface and internal tissue measurements. A dielectric relaxation for the external surface measurements, which is attributable to bound water and Maxwell-Wagner relaxations, is also illustrated. Coefficients of determination for complex-plane plots, moisture content and SSC relationship, and penetration depth are also shown graphically. Further studies are needed for determining the practicality of sensing melon quality from the dielectric properties.
ISSN:0832-7823