Stimulus duration, neural adaptation, and sweep visual evoked potential acuity estimates

Results in several studies have suggested that the visual evoked potential (VEP) amplitude can vary with stimulus duration. The purpose of this study was to determine whether acuity estimates obtained by extrapolation of the sweep VEP are altered by this adaptation effect. Sweep VEP data were obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative ophthalmology & visual science 1998-12, Vol.39 (13), p.2759-2768
Hauptverfasser: Ridder, WH, 3rd, McCulloch, D, Herbert, AM
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Results in several studies have suggested that the visual evoked potential (VEP) amplitude can vary with stimulus duration. The purpose of this study was to determine whether acuity estimates obtained by extrapolation of the sweep VEP are altered by this adaptation effect. Sweep VEP data were obtained from 16 healthy observers under binocular viewing conditions. Data were acquired with a commercially available VEP unit using standard electrode recording techniques. Three sweeps (high spatial frequencies, medium spatial frequencies, and low spatial frequencies) were run. The subjects' visual acuity at the monitor distance was 6/6 for the high spatial frequency sweep. For the medium and low spatial frequency sweeps, the subjects were dioptrically blurred to 6/15 (medium spatial frequencies) or 6/30 (low spatial frequencies) at the monitor distance. Each sweep consisted of six spatial frequencies (contrast 80%; temporal frequency (TF) = 7.5 Hz; screen luminance = 100 candela [cd]/m2). For each spatial frequency, the stimulus duration was 8 seconds, partitioned into 1-second bins. A minimum of eight sweeps were obtained per subject. An acuity estimate was obtained for each second's data by fitting a line to the high spatial frequencies (excluding noise) and extrapolating this line to the x-axis. With this technique, estimates could not be obtained for 29 of 384 possible acuities. The sweep VEP acuities for the 16 subjects did not change significantly over the 8 seconds of data collection for the high, medium, or low spatial frequency sweep (repeated measures analysis of variance [ANOVA]: high, P = 0.25; medium, P = 0.50; low, P = 0.23). In any given subject, there was a 1- to 2-octave range in acuity estimates over the 8 seconds of stimulus presentation (high, 1.23+/-0.417 octaves; medium, 1.41+/-0.593 octaves; low, 1.52+/-0.475 octaves; mean +/- SD). These results suggest that there is not a significant change in sweep VEP acuity estimates over an 8-second stimulus presentation. Thus, neural adaptation does not significantly affect the clinical use of the sweep VEP.
ISSN:0146-0404
1552-5783