Asymmetric Mating Interactions Drive Widespread Invasion and Displacement in a Whitefly

The role of behavioral mechanisms in animal invasions is poorly understood. We show that asymmetric mating interactions between closely related but previously allopatric genetic groups of the whitefly Bemisia tabaci, a haplodiploid species, have been a driving force contributing to widespread invasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2007-12, Vol.318 (5857), p.1769-1772
Hauptverfasser: Liu, Shu-Sheng, De Barro, P.J, Xu, Jing, Luan, Jun-Bo, Zang, Lian-Sheng, Ruan, Yong-Ming, Wan, Fang-Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of behavioral mechanisms in animal invasions is poorly understood. We show that asymmetric mating interactions between closely related but previously allopatric genetic groups of the whitefly Bemisia tabaci, a haplodiploid species, have been a driving force contributing to widespread invasion and displacement by alien populations. We conducted long-term field surveys, caged population experiments, and detailed behavioral observations in Zhejiang, China, and Queensland, Australia, to investigate the invasion process and its underlying behavioral mechanisms. During invasion and displacement, we found increased frequency of copulation leading to increased production of female progeny among the invader, as well as reduced copulation and female production in the indigenous genetic groups. Such asymmetric mating interactions may be critical to determining the capacity of a haplodiploid invader and the consequences for its closely related indigenous organisms.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1149887