Entropy rectifies the Brownian steps of kinesin

Kinesin is a stepping motor that successively produces forward and backward 8-nm steps along microtubules. Under physiological conditions, the steps powering kinesin's motility are biased in one direction and drive various biological motile processes. The physical mechanism underlying the unidi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2005-11, Vol.1 (6), p.342-347
Hauptverfasser: Yanagida, Toshio, Taniguchi, Yuichi, Nishiyama, Masayoshi, Ishii, Yoshiharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kinesin is a stepping motor that successively produces forward and backward 8-nm steps along microtubules. Under physiological conditions, the steps powering kinesin's motility are biased in one direction and drive various biological motile processes. The physical mechanism underlying the unidirectional bias of the kinesin steps is not fully understood. Here we explored the mechanical kinetics and thermodynamics of forward and backward kinesin steps by analyzing their temperature and load dependence. Results show that the frequency asymmetry between forward and backward steps is produced by entropy. Furthermore, the magnitude of the entropic asymmetry is 6 k B T , more than three times greater than expected from a current model, in which a mechanical conformational change within the kinesin molecular structure directly biases the kinesin steps forward. We propose that the stepping direction of kinesin is preferably caused by an entropy asymmetry resulting from the compatibility between the kinesin and microtubule interaction based on their polar structures.
ISSN:1552-4450
1552-4469
DOI:10.1038/nchembio741