Entropy of classical systems with long-range interactions

We discuss the form of the entropy for classical Hamiltonian systems with long-range interaction using the Vlasov equation which describes the dynamics of a N particle in the limit N-->infinity. The stationary states of the Hamiltonian system are subject to infinite conserved quantities due to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2005-11, Vol.95 (19), p.190601.1-190601.4, Article 190601
Hauptverfasser: ROCHA FILHO, T. M, FIGUEIREDO, A, AMATO, M. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss the form of the entropy for classical Hamiltonian systems with long-range interaction using the Vlasov equation which describes the dynamics of a N particle in the limit N-->infinity. The stationary states of the Hamiltonian system are subject to infinite conserved quantities due to the Vlasov dynamics. We show that the stationary states correspond to an extremum of the Boltzmann-Gibbs entropy, and their stability is obtained from the condition that this extremum is a maximum. As a consequence, the entropy is a function of an infinite set of Lagrange multipliers that depend on the initial condition. We also discuss in this context the meaning of ensemble inequivalence and the temperature.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.95.190601