Linear discriminant analysis of brain tumour (1)H MR spectra: a comparison of classification using whole spectra versus metabolite quantification

(1)H MRS is an attractive choice for non-invasively diagnosing brain tumours. Many studies have been performed to create an objective decision support system, but there is not yet a consensus as to the best techniques of MRS acquisition or data processing to be used for optimum classification. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NMR in biomedicine 2007-12, Vol.20 (8), p.763-770
Hauptverfasser: Opstad, K S, Ladroue, C, Bell, B A, Griffiths, J R, Howe, F A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(1)H MRS is an attractive choice for non-invasively diagnosing brain tumours. Many studies have been performed to create an objective decision support system, but there is not yet a consensus as to the best techniques of MRS acquisition or data processing to be used for optimum classification. In this study, we investigate whether LCModel analysis of short-TE (30 ms), single-voxel tumour spectra provide a better input for classification than the use of the original spectra. A total of 145 histologically diagnosed brain tumour spectra were acquired [14 astrocytoma grade II (AS2), 15 astrocytoma grade III (AS3), 42 glioblastoma (GBM), 41 metastases (MET) and 33 meningioma (MNG)], and linear discriminant analyses (LDA) were performed on the LCModel analysis of the spectra and the original spectra. The results consistently suggest improvement in classification when the LCModel concentrations are used. LDA of AS2, MNG and high-grade tumours (HG, comprising GBM and MET) correctly classified 94% using the LCModel dataset compared with 93% using the spectral dataset. The inclusion of AS3 reduced the accuracy to 82% and 78% for LCModel analysis and the original spectra, respectively, and further separating HG into GBM and MET gave 70% compared with 60%. Generally MNG spectra have profiles that are visually distinct from those of the other tumour types, but the classification accuracy was typically about 80%, with MNG with substantial lipid/macromolecule signals being classified as HG. Omission of the lipid/macromolecule concentrations in the LCModel dataset provided an improvement in classification of MNG (91% compared with 76%). In conclusion, there appears to be an advantage to performing pattern recognition on the quantitative analysis of tumour spectra rather than using the whole spectra. However, the results suggest that a two-step LDA process may help in classifying the five tumour groups to provide optimum classification of MNG with high lipid/macromolecule contributions which maybe misclassified as HG.
ISSN:0952-3480
DOI:10.1002/nbm.1147