Differences in Oxidation Kinetics Between Conjugated and Non-Conjugated Methyl Linoleate
The oxidation kinetics of conjugated methyl linoleate was compared with that of non-conjugated methyl linoleate under mild oxidation conditions (30 °C in the dark). Samples of methyl 9-cis,11-trans-linoleate, methyl 10-trans,12-cis linoleate and methyl 9-cis,12-cis linoleate were assayed separately...
Gespeichert in:
Veröffentlicht in: | Lipids 2007-12, Vol.42 (12), p.1085-1092 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The oxidation kinetics of conjugated methyl linoleate was compared with that of non-conjugated methyl linoleate under mild oxidation conditions (30 °C in the dark). Samples of methyl 9-cis,11-trans-linoleate, methyl 10-trans,12-cis linoleate and methyl 9-cis,12-cis linoleate were assayed separately and in mixtures. For comparative purposes, methyl α-linolenate and methyl oleate were also used. Two complementary analytical approaches were selected to monitor the progress of oxidation, (1) the traditional follow-up of residual substrate by gas liquid chromatography, and (2) an analytical procedure by high-performance size-exclusion chromatography (HPSEC) for direct measurement of the oxidation compounds formed. The HPSEC method enabled us to quantitate oxidized monomers, dimers and polymers concomitantly in a rapid and direct analysis. Results showed that conjugated methyl linoleate samples oxidized later than their non-conjugated counterparts, and showed a very different oxidation pattern. Thus, formation of oxidized monomers was negligible and the first and major compounds formed were polymerization products. Also, under the conditions used, non-conjugated and conjugated methyl linoleate samples in 1:1 mixtures led to decreased oxidation rate of non-conjugated methyl linoleate and increased oxidation rate of conjugated methyl linoleate. This study supports the view that oxidation kinetics of conjugated dienes differ substantially from that of methylene-interrupted dienes. |
---|---|
ISSN: | 0024-4201 1558-9307 |
DOI: | 10.1007/s11745-007-3113-x |