Specific single-cell isolation and genomic amplification of uncultured microorganisms
We in this study describe a new method for genomic studies of individual uncultured prokaryotic organisms, which was used for the isolation and partial genome sequencing of a soil archaeon. The diversity of Archaea in a soil sample was mapped by generating a clone library using group-specific primer...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2007-03, Vol.74 (4), p.926-935 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We in this study describe a new method for genomic studies of individual uncultured prokaryotic organisms, which was used for the isolation and partial genome sequencing of a soil archaeon. The diversity of Archaea in a soil sample was mapped by generating a clone library using group-specific primers in combination with a terminal restriction fragment length polymorphism profile. Intact cells were extracted from the environmental sample, and fluorescent in situ hybridization probing with Cy3-labeled probes designed from the clone library was subsequently used to detect the organisms of interest. Single cells with a bright fluorescent signal were isolated using a micromanipulator and the genome of the single isolated cells served as a template for multiple displacement amplification (MDA) using the Phi29 DNA polymerase. The generated MDA product was afterwards used for 16S rRNA gene sequence analysis and shotgun-cloned for additional genomic analysis. Sequence analysis showed >99% 16S rRNA gene homology to soil crenarchaeotal clone SCA1170 and shotgun fragments had the closest match to a crenarchaeotal BAC clone previously retrieved from a soil sample. The system was validated using Methanothermobacter thermoautotrophicus as single-cell test organism, and the validation setup produced 100% sequence homology to the ten tested regions of the genome of this organism. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-006-0725-7 |