IL-13 Mediates In Vivo IL-9 Activities on Lung Epithelial Cells but Not on Hematopoietic Cells

Increased IL-9 expression, either systemically or under the control of lung-specific promoter, induces an asthma-like phenotype, including mucus overproduction, mastocytosis, lung eosinophilia, and airway hyperresponsiveness. These activities correlate with increased production of other Th2 cytokine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Immunology 2007-03, Vol.178 (5), p.3244-3251
Hauptverfasser: Steenwinckel, Valerie, Louahed, Jamila, Orabona, Ciriana, Huaux, Francois, Warnier, Guy, McKenzie, Andrew, Lison, Dominique, Levitt, Roy, Renauld, Jean-Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased IL-9 expression, either systemically or under the control of lung-specific promoter, induces an asthma-like phenotype, including mucus overproduction, mastocytosis, lung eosinophilia, and airway hyperresponsiveness. These activities correlate with increased production of other Th2 cytokines such as IL-4, IL-5, and IL-13 in IL-9 Tg mice. To determine the exact role of IL-13 in this phenotype, mice overexpressing IL-9 were crossed with IL-13-deficient mice. In these animals, IL-9 could still induce mastocytosis and B lymphocyte infiltration of the lungs. Although IL-9-induced eosinophilia in the peritoneal cavity was not diminished in the absence of IL-13, IL-13 was required for IL-9 to increase eotaxin expression and lung eosinophilia. Mucus production and up-regulation of lung epithelial genes upon IL-9 overexpression were completely abolished in the absence of IL-13. Using hemopoietic cell transfer experiments with recipients that overexpressed IL-9 but were deficient in the IL-9 receptor (IL-9R), we could demonstrate that the effect of IL-9 on lung epithelial cells is indirect and could be fully restored by transfer of hemopoietic cells expressing IL-9R. Mucus production by lung epithelial cells was only up-regulated when hemopoietic cells simultaneously expressed functional IL-9R and IL-13 genes, indicating that IL-13 is not a cofactor but a direct mediator of the effect of IL-9 on lung epithelial cells. Taken together, these data indicate that IL-9 can promote asthma through IL-13-independent pathways via expansion of mast cells, eosinophils, and B cells, and through induction of IL-13 production by hemopoietic cells for mucus production and recruitment of eosinophils by lung epithelial cells.
ISSN:0022-1767
1550-6606
1365-2567
DOI:10.4049/jimmunol.178.5.3244