Characterization of phloem-sap transcription profile in melon plants

The phloem's role as a tissue responsible for the distribution of photoassimilates and nutrients among the various organs of higher plants has long been recognized. Recent studies have established that numerous proteins and mRNA molecules are also present in the phloem translocation stream; how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2007-10, Vol.58 (13), p.3645-3656
Hauptverfasser: Omid, Ayelet, Keilin, Tsvika, Glass, Adi, Leshkowitz, Dena, Wolf, Shmuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phloem's role as a tissue responsible for the distribution of photoassimilates and nutrients among the various organs of higher plants has long been recognized. Recent studies have established that numerous proteins and mRNA molecules are also present in the phloem translocation stream; however, limited information is available on the identity of transcripts present within the phloem sap. In this study, a genomic approach was taken to produce a transcription profile of melon phloem sap. A cDNA library was constructed from mRNAs extracted from melon phloem sap and 1900 clones were randomly selected for sequencing. Selection of high-quality sequences resulted in 986 unique transcripts corresponding to 1830 ESTs. A comparison between the phloem-sap library and publicly available libraries from leaves and fruits indicated that the transcript profile of phloem sap is unique, with a substantially higher proportion of genes associated with biotic stimulus, response to stress, and metal-ion binding. Manual functional analyses revealed that over 40% of the transcripts are related to stress and defence responses, while over 15% of them are related to signal transduction. Out of the 1830 ESTs, only three were characterized as coding for chlorophyll-binding protein or ribulose bisphosphate carboxylase. Heterografting experiments established that six out of 43 examined transcripts are capable of long-distance trafficking from melon stocks to pumpkin scions. Annotation of these six transcripts revealed that three of them are associated with auxin-signal transduction while the other three were not identified. The potential role of the expressed transcripts in the phloem sap is discussed.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/erm214