Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls
Arabidopsis cell walls contain large amounts of pectins and hemicelluloses, which are predominantly synthesized via the common precursor UDP-glucuronic acid. The major enzyme for the formation of this nucleotide-sugar is UDP-glucose dehydrogenase, catalysing the irreversible oxidation of UDP-glucose...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2007-10, Vol.58 (13), p.3609-3621 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Arabidopsis cell walls contain large amounts of pectins and hemicelluloses, which are predominantly synthesized via the common precursor UDP-glucuronic acid. The major enzyme for the formation of this nucleotide-sugar is UDP-glucose dehydrogenase, catalysing the irreversible oxidation of UDP-glucose into UDP-glucuronic acid. Four functional gene family members and one pseudogene are present in the Arabidopsis genome, and they show distinct tissue-specific expression patterns during plant development. The analyses of reporter gene lines indicate gene expression of UDP-glucose dehydrogenases in growing tissues. The biochemical characterization of the different isoforms shows equal affinities for the cofactor NAD⁺ (~40 μM) but variable affinities for the substrate UDP-glucose (120-335 μM) and different catalytic constants, suggesting a regulatory role for the different isoforms in carbon partitioning between cell wall formation and sucrose synthesis as the second major UDP-glucose-consuming pathway. UDP-glucose dehydrogenase is feedback inhibited by UDP-xylose. The relatively (compared with a soybean UDP-glucose dehydrogenase) low affinity of the enzymes for the substrate UDP-glucose is paralleled by the weak inhibition of the enzymes by UDP-xylose. The four Arabidopsis UDP-glucose dehydrogenase isoforms oxidize only UDP-glucose as a substrate. Nucleotide-sugars, which are converted by similar enzymes in bacteria, are not accepted as substrates for the Arabidopsis enzymes. |
---|---|
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/erm209 |