Enhanced creation of dispersive monolayer phonons in XePt(111) by inelastic helium atom scattering at low energies
Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of (4)He atoms by a monolayer solid of XePt(111) at incident energies of 2-25 meV. The...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2007-11, Vol.127 (20), p.204708-204708 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of (4)He atoms by a monolayer solid of XePt(111) at incident energies of 2-25 meV. There is strong inelastic scattering for both dispersive phonon branches (SH and LA) of the monolayer at incident energies below 8 meV. Several improvements enable more complete wave packet calculations of the inelastic scattering than in previous work. Long propagation times are made feasible by adding an absorbing potential at large distance. The times now extend to beyond 100 ps and enable a clarification of processes involving transient trapping of the He atoms. The wave packet is made more monochromatic by significantly increasing the spatial width of the initial Gaussian shape. The narrower energy distribution in the incident beam then enables a demonstration of strong energy dependence of the scattering over a scale of less than 0.3 meV. |
---|---|
ISSN: | 0021-9606 |
DOI: | 10.1063/1.2786990 |