Transgene expression levels and kinetics determine risk of humoral immune response modeled in factor IX knockout and missense mutant mice
Immune responses leading to antibody-mediated elimination of the transgenic protein are a concern in gene replacement for congenital protein deficiencies, for which hemophilia is an important model. Although most hemophilia B patients have circulating non-functional but immunologically crossreactive...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2007-03, Vol.14 (5), p.429-440 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Immune responses leading to antibody-mediated elimination of the transgenic protein are a concern in gene replacement for congenital protein deficiencies, for which hemophilia is an important model. Although most hemophilia B patients have circulating non-functional but immunologically crossreactive factor IX (FIX) protein (CRM+ phenotype), inciting factors for FIX neutralizing antibody (inhibitor) development have been studied in crossreactive material-negative (CRM−) animal models. For this study, determinants of FIX inhibitor development were compared in hemophilia B mice, in which circulating FIX protein is absent (CRM− factor IX knockout (FIXKO) model) or present (CRM+ missense R333Q-hFIX model) modeling multiple potential therapies. The investigations compare for the first time different serotypes of adeno-associated virus (AAV) vectors (AAV2 and AAV1), each at multiple doses, in the setting of two different FIX mutations. The comparisons demonstrate in the FIXKO background (CRM− phenotype) that neither vector serotype nor vector particle number independently determine the inhibitor trigger, which is influenced primarily by the level and kinetics of transgene expression. In the CRM+ missense background, inhibitor development was never stimulated by AAV gene therapy or protein therapy, despite the persistence of lymphocytes capable of responding to FIX with non-inhibitory antibodies. This genotype/phenotype is strongly protective against antibody formation in response to FIX therapy. |
---|---|
ISSN: | 0969-7128 1476-5462 |
DOI: | 10.1038/sj.gt.3302881 |