Reactive Oxygen Species and p38 Mitogen-Activated Protein Kinase Activate Bax to Induce Mitochondrial Cytochrome c Release and Apoptosis in Response to Malonate

Malonate, an inhibitor of mitochondrial complex II, is a widely used toxin to study neurodegeneration in Huntington's disease and ischemic stroke. We have shown previously that malonate increased reactive oxygen species (ROS) production in human SH-SY5Y neuroblastoma cells, leading to oxidative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 2007-03, Vol.71 (3), p.736-743
Hauptverfasser: Gomez-Lazaro, M., Galindo, M. F., Melero-Fernandez de Mera, R. M., Fernandez-Gómez, F. J., Concannon, C. G., Segura, M. F., Comella, J. X., Prehn, J. H. M., Jordan, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Malonate, an inhibitor of mitochondrial complex II, is a widely used toxin to study neurodegeneration in Huntington's disease and ischemic stroke. We have shown previously that malonate increased reactive oxygen species (ROS) production in human SH-SY5Y neuroblastoma cells, leading to oxidative stress, cytochrome c release, and apoptotic cell death. Expression of a green fluorescent protein-Bax fusion protein in SH-SY5Y neuroblastoma cells demonstrated a Bax redistribution from the cytosol to mitochondria after 12 to 24 h of malonate treatment that coincided with mitochondrial potential collapse and chromatin condensation. Inhibition of Bax translocation using furosemide, as well as Bax gene deletion, afforded significant protection against malonate-induced apoptosis. Further experiments revealed that malonate induced a prominent increase in the level of activated p38 mitogen-activated protein (MAP) kinase and that treatment with the p38 MAP kinase inhibitor SKF86002 potently blocked malonate-induced Bax translocation and apoptosis. Treatment with vitamin E diminished ROS production, reduced the activation status of p38 MAP kinase, inhibited Bax translocation, and protected against malonate-induced apoptosis. Our data suggest that malonate-induced ROS production and subsequent p38 MAP kinase activation mediates the activation of the pro-apoptotic Bax protein to induce mitochondrial membrane permeabilization and neuronal apoptosis.
ISSN:0026-895X
1521-0111
DOI:10.1124/mol.106.030718