Effects of Hydrogen-Bonding and Stacking Interactions with Amino Acids on the Acidity of Uracil

The effects of hydrogen-bonding interactions with amino acids on the (N1) acidity of uracil are evaluated using (B3LYP) density functional theory. Many different binding arrangements of each amino acid to three uracil binding sites are considered. The effects on the uracil acidity are found to signi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2007-02, Vol.111 (7), p.1858-1871
Hauptverfasser: Hunter, Ken C, Millen, Andrea L, Wetmore, Stacey D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of hydrogen-bonding interactions with amino acids on the (N1) acidity of uracil are evaluated using (B3LYP) density functional theory. Many different binding arrangements of each amino acid to three uracil binding sites are considered. The effects on the uracil acidity are found to significantly depend upon the nature of the amino acid and the binding orientation, but weakly depend on the binding site. Our results reveal that in some instances small models for the amino acids can be used, while for other amino acids larger models are required to properly describe the binding to uracil. The gas-phase acidity of uracil is found to increase by up to approximately 60 kJ mol-1 due to discrete hydrogen-bonding interactions. Although (MP2) stacking interactions with aromatic amino acids decrease the acidity of uracil, unexpected increases in the acidity are found when any of the aromatic amino acids, or the backbone, hydrogen bond to uracil. Consideration of enzymatic and aqueous environments leads to decreases in the effects of the amino acids on the acidity of uracil. However, we find that the magnitude of the decrease varies with the nature of the molecule bound, as well as the (gas-phase) binding orientations and strengths, and therefore solvation effects should be considered on a case-by-case basis in future work. Nevertheless, the effects of amino acid interactions within enzymatic environments are as much as approximately 35 kJ mol-1. The present study has general implications for understanding the nature of active site amino acids in enzymes, such as DNA repair enzymes, that catalyze reactions involving anionic nucleobase intermediates.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp066902p