Fast head-related transfer function measurement via reciprocity

An efficient method for head-related transfer function (HRTF) measurement is presented. By applying the acoustical principle of reciprocity, one can swap the speaker and the microphone positions in the traditional (direct) HRTF measurement setup, that is, insert a microspeaker into the subject'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2006-10, Vol.120 (4), p.2202-2215
Hauptverfasser: Zotkin, Dmitry N., Duraiswami, Ramani, Grassi, Elena, Gumerov, Nail A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An efficient method for head-related transfer function (HRTF) measurement is presented. By applying the acoustical principle of reciprocity, one can swap the speaker and the microphone positions in the traditional (direct) HRTF measurement setup, that is, insert a microspeaker into the subject's ear and position several microphones around the subject, enabling simultaneous HRTF acquisition at all microphone positions. The setup used for reciprocal HRTF measurement is described, and the obtained HRTFs are compared with the analytical solution for a sound-hard sphere and with KEMAR manikin HRTF obtained by the direct method. The reciprocally measured sphere HRTF agrees well with the analytical solution. The reciprocally measured and the directly measured KEMAR HRTFs are not exactly identical but agree well in spectrum shape and feature positions. To evaluate if the observed differences are significant, an auditory localization model based on work by J. C. Middlebrooks [ J. Acoust. Soc. Am. 92 , 2607-2624 ( 1992 ) ] was used to predict where a virtual sound source synthesized with the reciprocally measured HRTF would be localized if the directly measured HRTF were used for the localization. It was found that the predicted localization direction generally lies close to the measurement direction, indicating that the HRTFs obtained via the two methods are in good agreement.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.2207578