Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data
Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced t...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2007-02, Vol.79 (4), p.1485-1491 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1491 |
---|---|
container_issue | 4 |
container_start_page | 1485 |
container_title | Analytical chemistry (Washington) |
container_volume | 79 |
creator | Rearden, Preshious Harrington, Peter B Karnes, John J Bunker, Christopher E |
description | Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced to a gas chromatograph. The coupling of DMS to GC offers an additional order of information in that two-way data are obtained with respect to compensation voltages and retention time. A fuzzy rule-building expert system (FuRES) was used as a multivariate classifier for the two-way gas chromatograms of fuels, including rocket (RP-1, RG-1), diesel, and jet (JP-4, JP-5, JP-7, JP-TS, JetA-3639, Jet A-3688, Jet A-3690, Jet A-3694, and Jet A-generic) fuels. The GC-DMS with SPME was able to produce characteristic profiles of the fuels and a classification rate of 95 ± 0.3% obtained with a FuRES model. The classification system also had perfect classification for each fuel sample when applied one month later. |
doi_str_mv | 10.1021/ac060527f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68999811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1256448721</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-54f33171c7d8be536a695e6cf8bfc81f3dc25478e850034ccc03569649719b933</originalsourceid><addsrcrecordid>eNpl0cFuEzEQBuAVAtFQOPACyEICicOCvV6v7WNJmwapFVWTiqM1cezGxVkH2yu6fRielQ2JGgQnH_zp18z8RfGa4I8EV-QTaNxgVnH7pBgRVuGyEaJ6WowwxrSsOMZHxYuU7jAmBJPmeXFEeCW5rPmo-DXpHh56dN15U37unF-69had3W9MzGjWp2zWaOwhJWedhuxCi4JFk854dJO2dBa8W5ZXK0gGXTodg7nPEfQfOf8Zym_Qo3NIaLyKYQ053EbYrHp06qw10bTZgUeXYeG8yz2abYzOgzM5Oo1OIcPL4pkFn8yr_Xtc3EzO5uNpefH1_Mv45KKEGotcstpSSjjRfCkWhtEGGslMo61YWC2IpUtdsZoLI9hwklprjSlrZFNLTuRCUnpcvN_lbmL40ZmU1dolbbyH1oQuqUZIKQUhA3z7D7wLXWyH2VRFuBCUCTygDzs03COlaKzaRLeG2CuC1bYx9djYYN_sA7vF2iwPcl_RAN7tASQN3kZotUsHJxilUmxXKHfODa3dP_5D_K4aTjlT86uZmuLp9YSNiforF3Q6LPH_gL8Bm9G6Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217883580</pqid></control><display><type>article</type><title>Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data</title><source>American Chemical Society Journals</source><creator>Rearden, Preshious ; Harrington, Peter B ; Karnes, John J ; Bunker, Christopher E</creator><creatorcontrib>Rearden, Preshious ; Harrington, Peter B ; Karnes, John J ; Bunker, Christopher E</creatorcontrib><description>Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced to a gas chromatograph. The coupling of DMS to GC offers an additional order of information in that two-way data are obtained with respect to compensation voltages and retention time. A fuzzy rule-building expert system (FuRES) was used as a multivariate classifier for the two-way gas chromatograms of fuels, including rocket (RP-1, RG-1), diesel, and jet (JP-4, JP-5, JP-7, JP-TS, JetA-3639, Jet A-3688, Jet A-3690, Jet A-3694, and Jet A-generic) fuels. The GC-DMS with SPME was able to produce characteristic profiles of the fuels and a classification rate of 95 ± 0.3% obtained with a FuRES model. The classification system also had perfect classification for each fuel sample when applied one month later.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac060527f</identifier><identifier>PMID: 17297947</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Fuels ; Gas chromatographic methods ; Ion chromatography ; Mass spectrometry ; Sampling</subject><ispartof>Analytical chemistry (Washington), 2007-02, Vol.79 (4), p.1485-1491</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 15, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-54f33171c7d8be536a695e6cf8bfc81f3dc25478e850034ccc03569649719b933</citedby><cites>FETCH-LOGICAL-a408t-54f33171c7d8be536a695e6cf8bfc81f3dc25478e850034ccc03569649719b933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac060527f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac060527f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18533983$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17297947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rearden, Preshious</creatorcontrib><creatorcontrib>Harrington, Peter B</creatorcontrib><creatorcontrib>Karnes, John J</creatorcontrib><creatorcontrib>Bunker, Christopher E</creatorcontrib><title>Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced to a gas chromatograph. The coupling of DMS to GC offers an additional order of information in that two-way data are obtained with respect to compensation voltages and retention time. A fuzzy rule-building expert system (FuRES) was used as a multivariate classifier for the two-way gas chromatograms of fuels, including rocket (RP-1, RG-1), diesel, and jet (JP-4, JP-5, JP-7, JP-TS, JetA-3639, Jet A-3688, Jet A-3690, Jet A-3694, and Jet A-generic) fuels. The GC-DMS with SPME was able to produce characteristic profiles of the fuels and a classification rate of 95 ± 0.3% obtained with a FuRES model. The classification system also had perfect classification for each fuel sample when applied one month later.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Gas chromatographic methods</subject><subject>Ion chromatography</subject><subject>Mass spectrometry</subject><subject>Sampling</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpl0cFuEzEQBuAVAtFQOPACyEICicOCvV6v7WNJmwapFVWTiqM1cezGxVkH2yu6fRielQ2JGgQnH_zp18z8RfGa4I8EV-QTaNxgVnH7pBgRVuGyEaJ6WowwxrSsOMZHxYuU7jAmBJPmeXFEeCW5rPmo-DXpHh56dN15U37unF-69had3W9MzGjWp2zWaOwhJWedhuxCi4JFk854dJO2dBa8W5ZXK0gGXTodg7nPEfQfOf8Zym_Qo3NIaLyKYQ053EbYrHp06qw10bTZgUeXYeG8yz2abYzOgzM5Oo1OIcPL4pkFn8yr_Xtc3EzO5uNpefH1_Mv45KKEGotcstpSSjjRfCkWhtEGGslMo61YWC2IpUtdsZoLI9hwklprjSlrZFNLTuRCUnpcvN_lbmL40ZmU1dolbbyH1oQuqUZIKQUhA3z7D7wLXWyH2VRFuBCUCTygDzs03COlaKzaRLeG2CuC1bYx9djYYN_sA7vF2iwPcl_RAN7tASQN3kZotUsHJxilUmxXKHfODa3dP_5D_K4aTjlT86uZmuLp9YSNiforF3Q6LPH_gL8Bm9G6Fg</recordid><startdate>20070215</startdate><enddate>20070215</enddate><creator>Rearden, Preshious</creator><creator>Harrington, Peter B</creator><creator>Karnes, John J</creator><creator>Bunker, Christopher E</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070215</creationdate><title>Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data</title><author>Rearden, Preshious ; Harrington, Peter B ; Karnes, John J ; Bunker, Christopher E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-54f33171c7d8be536a695e6cf8bfc81f3dc25478e850034ccc03569649719b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Gas chromatographic methods</topic><topic>Ion chromatography</topic><topic>Mass spectrometry</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rearden, Preshious</creatorcontrib><creatorcontrib>Harrington, Peter B</creatorcontrib><creatorcontrib>Karnes, John J</creatorcontrib><creatorcontrib>Bunker, Christopher E</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rearden, Preshious</au><au>Harrington, Peter B</au><au>Karnes, John J</au><au>Bunker, Christopher E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2007-02-15</date><risdate>2007</risdate><volume>79</volume><issue>4</issue><spage>1485</spage><epage>1491</epage><pages>1485-1491</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced to a gas chromatograph. The coupling of DMS to GC offers an additional order of information in that two-way data are obtained with respect to compensation voltages and retention time. A fuzzy rule-building expert system (FuRES) was used as a multivariate classifier for the two-way gas chromatograms of fuels, including rocket (RP-1, RG-1), diesel, and jet (JP-4, JP-5, JP-7, JP-TS, JetA-3639, Jet A-3688, Jet A-3690, Jet A-3694, and Jet A-generic) fuels. The GC-DMS with SPME was able to produce characteristic profiles of the fuels and a classification rate of 95 ± 0.3% obtained with a FuRES model. The classification system also had perfect classification for each fuel sample when applied one month later.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17297947</pmid><doi>10.1021/ac060527f</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2007-02, Vol.79 (4), p.1485-1491 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_68999811 |
source | American Chemical Society Journals |
subjects | Analytical chemistry Chemistry Chromatographic methods and physical methods associated with chromatography Exact sciences and technology Fuels Gas chromatographic methods Ion chromatography Mass spectrometry Sampling |
title | Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Rule-Building%20Expert%20System%20Classification%20of%20Fuel%20Using%20Solid-Phase%20Microextraction%20Two-Way%20Gas%20Chromatography%20Differential%20Mobility%20Spectrometric%20Data&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Rearden,%20Preshious&rft.date=2007-02-15&rft.volume=79&rft.issue=4&rft.spage=1485&rft.epage=1491&rft.pages=1485-1491&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac060527f&rft_dat=%3Cproquest_cross%3E1256448721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217883580&rft_id=info:pmid/17297947&rfr_iscdi=true |