Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data

Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2007-02, Vol.79 (4), p.1485-1491
Hauptverfasser: Rearden, Preshious, Harrington, Peter B, Karnes, John J, Bunker, Christopher E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1491
container_issue 4
container_start_page 1485
container_title Analytical chemistry (Washington)
container_volume 79
creator Rearden, Preshious
Harrington, Peter B
Karnes, John J
Bunker, Christopher E
description Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced to a gas chromatograph. The coupling of DMS to GC offers an additional order of information in that two-way data are obtained with respect to compensation voltages and retention time. A fuzzy rule-building expert system (FuRES) was used as a multivariate classifier for the two-way gas chromatograms of fuels, including rocket (RP-1, RG-1), diesel, and jet (JP-4, JP-5, JP-7, JP-TS, JetA-3639, Jet A-3688, Jet A-3690, Jet A-3694, and Jet A-generic) fuels. The GC-DMS with SPME was able to produce characteristic profiles of the fuels and a classification rate of 95 ± 0.3% obtained with a FuRES model. The classification system also had perfect classification for each fuel sample when applied one month later.
doi_str_mv 10.1021/ac060527f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68999811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1256448721</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-54f33171c7d8be536a695e6cf8bfc81f3dc25478e850034ccc03569649719b933</originalsourceid><addsrcrecordid>eNpl0cFuEzEQBuAVAtFQOPACyEICicOCvV6v7WNJmwapFVWTiqM1cezGxVkH2yu6fRielQ2JGgQnH_zp18z8RfGa4I8EV-QTaNxgVnH7pBgRVuGyEaJ6WowwxrSsOMZHxYuU7jAmBJPmeXFEeCW5rPmo-DXpHh56dN15U37unF-69had3W9MzGjWp2zWaOwhJWedhuxCi4JFk854dJO2dBa8W5ZXK0gGXTodg7nPEfQfOf8Zym_Qo3NIaLyKYQ053EbYrHp06qw10bTZgUeXYeG8yz2abYzOgzM5Oo1OIcPL4pkFn8yr_Xtc3EzO5uNpefH1_Mv45KKEGotcstpSSjjRfCkWhtEGGslMo61YWC2IpUtdsZoLI9hwklprjSlrZFNLTuRCUnpcvN_lbmL40ZmU1dolbbyH1oQuqUZIKQUhA3z7D7wLXWyH2VRFuBCUCTygDzs03COlaKzaRLeG2CuC1bYx9djYYN_sA7vF2iwPcl_RAN7tASQN3kZotUsHJxilUmxXKHfODa3dP_5D_K4aTjlT86uZmuLp9YSNiforF3Q6LPH_gL8Bm9G6Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217883580</pqid></control><display><type>article</type><title>Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data</title><source>American Chemical Society Journals</source><creator>Rearden, Preshious ; Harrington, Peter B ; Karnes, John J ; Bunker, Christopher E</creator><creatorcontrib>Rearden, Preshious ; Harrington, Peter B ; Karnes, John J ; Bunker, Christopher E</creatorcontrib><description>Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced to a gas chromatograph. The coupling of DMS to GC offers an additional order of information in that two-way data are obtained with respect to compensation voltages and retention time. A fuzzy rule-building expert system (FuRES) was used as a multivariate classifier for the two-way gas chromatograms of fuels, including rocket (RP-1, RG-1), diesel, and jet (JP-4, JP-5, JP-7, JP-TS, JetA-3639, Jet A-3688, Jet A-3690, Jet A-3694, and Jet A-generic) fuels. The GC-DMS with SPME was able to produce characteristic profiles of the fuels and a classification rate of 95 ± 0.3% obtained with a FuRES model. The classification system also had perfect classification for each fuel sample when applied one month later.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac060527f</identifier><identifier>PMID: 17297947</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Fuels ; Gas chromatographic methods ; Ion chromatography ; Mass spectrometry ; Sampling</subject><ispartof>Analytical chemistry (Washington), 2007-02, Vol.79 (4), p.1485-1491</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 15, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-54f33171c7d8be536a695e6cf8bfc81f3dc25478e850034ccc03569649719b933</citedby><cites>FETCH-LOGICAL-a408t-54f33171c7d8be536a695e6cf8bfc81f3dc25478e850034ccc03569649719b933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac060527f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac060527f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18533983$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17297947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rearden, Preshious</creatorcontrib><creatorcontrib>Harrington, Peter B</creatorcontrib><creatorcontrib>Karnes, John J</creatorcontrib><creatorcontrib>Bunker, Christopher E</creatorcontrib><title>Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced to a gas chromatograph. The coupling of DMS to GC offers an additional order of information in that two-way data are obtained with respect to compensation voltages and retention time. A fuzzy rule-building expert system (FuRES) was used as a multivariate classifier for the two-way gas chromatograms of fuels, including rocket (RP-1, RG-1), diesel, and jet (JP-4, JP-5, JP-7, JP-TS, JetA-3639, Jet A-3688, Jet A-3690, Jet A-3694, and Jet A-generic) fuels. The GC-DMS with SPME was able to produce characteristic profiles of the fuels and a classification rate of 95 ± 0.3% obtained with a FuRES model. The classification system also had perfect classification for each fuel sample when applied one month later.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Gas chromatographic methods</subject><subject>Ion chromatography</subject><subject>Mass spectrometry</subject><subject>Sampling</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpl0cFuEzEQBuAVAtFQOPACyEICicOCvV6v7WNJmwapFVWTiqM1cezGxVkH2yu6fRielQ2JGgQnH_zp18z8RfGa4I8EV-QTaNxgVnH7pBgRVuGyEaJ6WowwxrSsOMZHxYuU7jAmBJPmeXFEeCW5rPmo-DXpHh56dN15U37unF-69had3W9MzGjWp2zWaOwhJWedhuxCi4JFk854dJO2dBa8W5ZXK0gGXTodg7nPEfQfOf8Zym_Qo3NIaLyKYQ053EbYrHp06qw10bTZgUeXYeG8yz2abYzOgzM5Oo1OIcPL4pkFn8yr_Xtc3EzO5uNpefH1_Mv45KKEGotcstpSSjjRfCkWhtEGGslMo61YWC2IpUtdsZoLI9hwklprjSlrZFNLTuRCUnpcvN_lbmL40ZmU1dolbbyH1oQuqUZIKQUhA3z7D7wLXWyH2VRFuBCUCTygDzs03COlaKzaRLeG2CuC1bYx9djYYN_sA7vF2iwPcl_RAN7tASQN3kZotUsHJxilUmxXKHfODa3dP_5D_K4aTjlT86uZmuLp9YSNiforF3Q6LPH_gL8Bm9G6Fg</recordid><startdate>20070215</startdate><enddate>20070215</enddate><creator>Rearden, Preshious</creator><creator>Harrington, Peter B</creator><creator>Karnes, John J</creator><creator>Bunker, Christopher E</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070215</creationdate><title>Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data</title><author>Rearden, Preshious ; Harrington, Peter B ; Karnes, John J ; Bunker, Christopher E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-54f33171c7d8be536a695e6cf8bfc81f3dc25478e850034ccc03569649719b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Gas chromatographic methods</topic><topic>Ion chromatography</topic><topic>Mass spectrometry</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rearden, Preshious</creatorcontrib><creatorcontrib>Harrington, Peter B</creatorcontrib><creatorcontrib>Karnes, John J</creatorcontrib><creatorcontrib>Bunker, Christopher E</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rearden, Preshious</au><au>Harrington, Peter B</au><au>Karnes, John J</au><au>Bunker, Christopher E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2007-02-15</date><risdate>2007</risdate><volume>79</volume><issue>4</issue><spage>1485</spage><epage>1491</epage><pages>1485-1491</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced to a gas chromatograph. The coupling of DMS to GC offers an additional order of information in that two-way data are obtained with respect to compensation voltages and retention time. A fuzzy rule-building expert system (FuRES) was used as a multivariate classifier for the two-way gas chromatograms of fuels, including rocket (RP-1, RG-1), diesel, and jet (JP-4, JP-5, JP-7, JP-TS, JetA-3639, Jet A-3688, Jet A-3690, Jet A-3694, and Jet A-generic) fuels. The GC-DMS with SPME was able to produce characteristic profiles of the fuels and a classification rate of 95 ± 0.3% obtained with a FuRES model. The classification system also had perfect classification for each fuel sample when applied one month later.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17297947</pmid><doi>10.1021/ac060527f</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2007-02, Vol.79 (4), p.1485-1491
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_68999811
source American Chemical Society Journals
subjects Analytical chemistry
Chemistry
Chromatographic methods and physical methods associated with chromatography
Exact sciences and technology
Fuels
Gas chromatographic methods
Ion chromatography
Mass spectrometry
Sampling
title Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Rule-Building%20Expert%20System%20Classification%20of%20Fuel%20Using%20Solid-Phase%20Microextraction%20Two-Way%20Gas%20Chromatography%20Differential%20Mobility%20Spectrometric%20Data&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Rearden,%20Preshious&rft.date=2007-02-15&rft.volume=79&rft.issue=4&rft.spage=1485&rft.epage=1491&rft.pages=1485-1491&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac060527f&rft_dat=%3Cproquest_cross%3E1256448721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217883580&rft_id=info:pmid/17297947&rfr_iscdi=true