Fuzzy Rule-Building Expert System Classification of Fuel Using Solid-Phase Microextraction Two-Way Gas Chromatography Differential Mobility Spectrometric Data
Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced t...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2007-02, Vol.79 (4), p.1485-1491 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gas chromatography/differential mobility spectrometry (GC/DMS) has been investigated for characterization of fuels. Neat fuel samples were sampled using solid-phase microextraction (SPME) and analyzed using a micromachined differential mobility spectrometer with a photoionization source interfaced to a gas chromatograph. The coupling of DMS to GC offers an additional order of information in that two-way data are obtained with respect to compensation voltages and retention time. A fuzzy rule-building expert system (FuRES) was used as a multivariate classifier for the two-way gas chromatograms of fuels, including rocket (RP-1, RG-1), diesel, and jet (JP-4, JP-5, JP-7, JP-TS, JetA-3639, Jet A-3688, Jet A-3690, Jet A-3694, and Jet A-generic) fuels. The GC-DMS with SPME was able to produce characteristic profiles of the fuels and a classification rate of 95 ± 0.3% obtained with a FuRES model. The classification system also had perfect classification for each fuel sample when applied one month later. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac060527f |