Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging
Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy (CL...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2007-02, Vol.25 (2), p.249-253 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy (CLEM), a simple imaging approach that reduces photobleaching and phototoxicity two- to tenfold, depending on the fluorophore distribution in the object. By spatially controlling the light-exposure time, CLEM reduces the excitation-light dose without compromising image quality. We show that CLEM reduces photobleaching sevenfold in tobacco plant cells expressing microtubule-associated GFP-MAP4 and reduces production of reactive oxygen species eightfold and prolongs cell survival sixfold in HeLa cells expressing chromatin-associated H2B-GFP. In addition, CLEM increases the dynamic range of the fluorescence intensity at least twofold. |
---|---|
ISSN: | 1087-0156 1546-1696 |
DOI: | 10.1038/nbt1278 |