The glucose and nitrogen starvation response of Bacillus licheniformis

The glucose and nitrogen starvation stimulons of Bacillus licheniformis were determined by transcriptome and proteome analyses. Under both starvation conditions, the main response of B. licheniformis was a switch to the usage of alternative nutrient sources. This was indicated by an induction of gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteomics (Weinheim) 2007-02, Vol.7 (3), p.413-423
Hauptverfasser: Voigt, Birgit, Hoi, Le Thi, Jürgen, Britta, Albrecht, Dirk, Ehrenreich, Armin, Veith, Birgit, Evers, Stefan, Maurer, Karl-Heinz, Hecker, Michael, Schweder, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The glucose and nitrogen starvation stimulons of Bacillus licheniformis were determined by transcriptome and proteome analyses. Under both starvation conditions, the main response of B. licheniformis was a switch to the usage of alternative nutrient sources. This was indicated by an induction of genes involved in the metabolism of C‐2 substrates during glucose limitation. In addition, B. licheniformis seems to be using other organic substances like amino acids and lipids as carbon sources when subjected to glucose starvation. This observation is supported by the induction of a high number of genes coding for proteins involved in amino acid and lipid degradation. During nitrogen starvation, genes for several proteases and peptidases involved in nitrate and nitrite assimilation were induced, which enables this bacterium to recruit nitrogen from alternative sources. Both starvation conditions led to a down‐regulation of transcription of most vegetative genes, which was subsequently reflected by a reduced synthesis of the corresponding proteins. A selected set of genes was induced by both starvation conditions. Among them were yvyD, citA and the putative methylcitrate shunt genes mmgD, mmgE and yqiQ. However, both starvation conditions did not induce a general SigmaB‐dependent stress response.
ISSN:1615-9853
1615-9861
DOI:10.1002/pmic.200600556