On the evolution of epistasis II: A generalized Wright–Kimura framework
The evolution of fitness interactions between genes at two major loci is studied where the alleles at a third locus modify the epistatic interaction between the two major loci. The epistasis is defined by a parameter ε and a matrix structure that specifies the nature of the interactions. When ε = 0...
Gespeichert in:
Veröffentlicht in: | Theoretical population biology 2007-03, Vol.71 (2), p.230-238 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The evolution of fitness interactions between genes at two major loci is studied where the alleles at a third locus modify the epistatic interaction between the two major loci. The epistasis is defined by a parameter
ε
and a matrix structure that specifies the nature of the interactions. When
ε
=
0
the two major loci have additive fitnesses, and when these are symmetric the interaction matrices studied here produce symmetric viabilities of the Wright [1952. The genetics of quantitative variability. In: Reeve, E.C.R., Waddington, C.H. (Eds.), Quantitative Inheritance. Her Majesty's Stationary Office, London]–Kimura [1956. A model of a genetic system which leads to closer linkage by natural selection. Evolution 10, 278–281] form. Two such interaction matrices are studied, for one of which epistasis as measured by
|
ε
|
always increases, and for the other it increases when the linkage between the major loci is tight enough and there is initial linkage disequilibrium. Increase of epistasis does not necessarily coincide with increase in equilibrium mean fitness. |
---|---|
ISSN: | 0040-5809 1096-0325 |
DOI: | 10.1016/j.tpb.2006.10.002 |