Kernel Least-Squares Models Using Updates of the Pseudoinverse

Sparse nonlinear classification and regression models in reproducing kernel Hilbert spaces (RKHSs) are considered. The use of Mercer kernels and the square loss function gives rise to an overdetermined linear least-squares problem in the corresponding RKHS. When we apply a greedy forward selection s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2006-12, Vol.18 (12), p.2928-2935
Hauptverfasser: Andelić, E., Schafföner, M., Katz, M., Krüger, S. E., Wendemuth, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sparse nonlinear classification and regression models in reproducing kernel Hilbert spaces (RKHSs) are considered. The use of Mercer kernels and the square loss function gives rise to an overdetermined linear least-squares problem in the corresponding RKHS. When we apply a greedy forward selection scheme, the least-squares problem may be solved by an order-recursive update of the pseudoinverse in each iteration step. The computational time is linear with respect to the number of the selected training samples.
ISSN:0899-7667
1530-888X
DOI:10.1162/neco.2006.18.12.2928