Redox Regulation Facilitates Optimal Peptide Selection by MHC Class I during Antigen Processing

Activated CD8+ T cells discriminate infected and tumor cells from normal self by recognizing MHC class I-bound peptides on the surface of antigen-presenting cells. The mechanism by which MHC class I molecules select optimal peptides against a background of prevailing suboptimal peptides and in a con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2006-10, Vol.127 (2), p.369-382
Hauptverfasser: Park, Boyoun, Lee, Sungwook, Kim, Eunkyung, Cho, Kwangmin, Riddell, Stanley R., Cho, Sunglim, Ahn, Kwangseog
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activated CD8+ T cells discriminate infected and tumor cells from normal self by recognizing MHC class I-bound peptides on the surface of antigen-presenting cells. The mechanism by which MHC class I molecules select optimal peptides against a background of prevailing suboptimal peptides and in a considerably proteolytic ER environment remained unknown. Here, we identify protein disulfide isomerase (PDI), an enzyme critical to the formation of correct disulfide bonds in proteins, as a component of the peptide-loading complex. We show that PDI stabilizes a peptide-receptive site by regulating the oxidation state of the disulfide bond in the MHC peptide-binding groove, a function that is essential for selecting optimal peptides. Furthermore, we demonstrate that human cytomegalovirus US3 protein inhibits CD8+ T cell recognition by mediating PDI degradation, verifying the functional relevance of PDI-catalyzed peptide editing in controlling intracellular pathogens. These results establish a link between thiol-based redox regulation and antigen processing.
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2006.08.041