Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: Revisiting the role of surfactants
Poly(butyl cyanoacrylate) nanoparticles coated with poloxamer 188 (Pluronic® F68) and also, as shown previously, polysorbate 80 (Tween® 80) considerably enhance the anti-tumour effect of doxorubicin against an intracranial glioblastoma in rats. The investigation of plasma protein adsorption on the s...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2007-01, Vol.117 (1), p.51-58 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poly(butyl cyanoacrylate) nanoparticles coated with poloxamer 188 (Pluronic® F68) and also, as shown previously, polysorbate 80 (Tween® 80) considerably enhance the anti-tumour effect of doxorubicin against an intracranial glioblastoma in rats. The investigation of plasma protein adsorption on the surface of the drug-loaded nanoparticles by two-dimensional electrophoresis (2-D PAGE) revealed that both surfactants, besides other plasma components, induced a considerable adsorption of apolipoprotein A-I (ApoA-I). It is hypothesized that delivery of doxorubicin to the brain by means of nanoparticles may be augmented by the interaction of apolipoprotein A-I that is anchored on the surface of the nanoparticles with the scavenger receptor class B type I (SR-BI) located at the blood–brain barrier. This is the first study that shows a correlation between the adsorption of apolipoprotein A-I on the nanoparticle surface and the delivery of the drug across the blood–brain barrier. |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2006.10.015 |