Electrochemical Capacitances of Well-Defined Carbon Surfaces

Reported is the capacitive behavior of homogeneous and well-defined surfaces of pristine carbon nanofibers (CNFs) and surface-modified CNFs. The capacitances of the well-defined CNFs were measured with cyclic voltammetry to correlate the surface structure with capacitance. Among the studied pristine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2006-10, Vol.22 (22), p.9086-9088
Hauptverfasser: Kim, Taegon, Lim, Seongyop, Kwon, Kihyun, Hong, Seong-Hwa, Qiao, Wenming, Rhee, Choong Kyun, Yoon, Seong-Ho, Mochida, Isao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reported is the capacitive behavior of homogeneous and well-defined surfaces of pristine carbon nanofibers (CNFs) and surface-modified CNFs. The capacitances of the well-defined CNFs were measured with cyclic voltammetry to correlate the surface structure with capacitance. Among the studied pristine CNFs, the edge surfaces of platelet CNFs (PCNF) and herringbone CNFs were more effective in capacitive charging than the basal plane surface of tubular CNF by a factor of 3−5. Graphitization of PCNF (GPCNF) changed the edge surface of PCNF into a domelike basal plane surface, and the corresponding capacitances decreased from 12.5 to 3.2 F/g. A chemical oxidation of the GPCNF, however, recovered a clear edge surface by removal of the curved basal planes to increase the capacitance to 5.6 F/g. The difference in the contribution of the edge surface and basal-plane surface to the capacitance of CNF was discussed in terms of the anisotropic conductivity of graphitic materials.
ISSN:0743-7463
1520-5827
DOI:10.1021/la061380q