In Silico Prediction of Cytochrome P450 2D6 and 3A4 Inhibition Using Gaussian Kernel Weighted k-Nearest Neighbor and Extended Connectivity Fingerprints, Including Structural Fragment Analysis of Inhibitors versus Noninhibitors

Inhibition of cytochrome P450 (CYP) enzymes is unwanted because of the risk of severe side effects due to drug−drug interactions. We present two in silico Gaussian kernel weighted k-nearest neighbor models based on extended connectivity fingerprints that classify CYP2D6 and CYP3A4 inhibition. Data u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2007-02, Vol.50 (3), p.501-511
Hauptverfasser: Jensen, Berith F, Vind, Christian, Brockhoff, Per B, Refsgaard, Hanne H. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue 3
container_start_page 501
container_title Journal of medicinal chemistry
container_volume 50
creator Jensen, Berith F
Vind, Christian
Brockhoff, Per B
Refsgaard, Hanne H. F
description Inhibition of cytochrome P450 (CYP) enzymes is unwanted because of the risk of severe side effects due to drug−drug interactions. We present two in silico Gaussian kernel weighted k-nearest neighbor models based on extended connectivity fingerprints that classify CYP2D6 and CYP3A4 inhibition. Data used for modeling consisted of diverse sets of 1153 and 1382 drug candidates tested for CYP2D6 and CYP3A4 inhibition in human liver microsomes. For CYP2D6, 82% of the classified test set compounds were predicted to the correct class. For CYP3A4, 88% of the classified compounds were correctly classified. CYP2D6 and CYP3A4 inhibition were additionally classified for an external test set on 14 drugs, and multidimensional scaling plots showed that the drugs in the external test set were in the periphery of the training sets. Furthermore, fragment analyses were performed and structural fragments frequent in CYP2D6 and CYP3A4 inhibitors and noninhibitors are presented.
doi_str_mv 10.1021/jm060333s
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68964568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68964568</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-651cd0e14c36e02edc410698fbd748f39abb206da3925783925e61f8a542eea43</originalsourceid><addsrcrecordid>eNqFkV9v0zAUxSMEYmXwwBdAfgEJiYD_xUkeu24tFVUpdBOPkePctO4Se9jOtH5dPgnJWnUvSLzY0r0_nXPsE0VvCf5MMCVfdi0WmDHmn0UjklAc8wzz59EIY0pjKig7i155v8MYM0LZy-iMpFQIiuko-jM3aK0brSxaOai0CtoaZGs02Qerts62gFY8wYheCiRNhdiYo7nZ6lI_kjdemw2ayc57LQ36Bs5Ag36B3mwDVOg2XoJ04ANaDqPSukeRq4cApur3E2sM9J73OuzRtJcCd-e0Cf5Tb6KarhrU18F1KnRONmjq5KYFE9DYyGbvtR-iHuNY59E9ON95tLRGn4avoxe1bDy8Od7n0c306nryNV58n80n40UseZqFWCREVRgIV0wAplApTrDIs7qsUp7VLJdlSbGoJMtpkmbDCYLUmUw4BZCcnUcfDrp3zv7u-jcXrfYKmkYasJ0vRJYLnojsvyDJ04SSZAA_HkDlrPcO6qL_nFa6fUFwMTRfnJrv2XdH0a5soXoij1X3wPsjIL2STe2kUdo_cdngyUXPxQdO-wAPp710t4VIWZoU16t18eMy-blYX-TF7ElXKl_sbOf6Zvw_Av4FevnUWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19752158</pqid></control><display><type>article</type><title>In Silico Prediction of Cytochrome P450 2D6 and 3A4 Inhibition Using Gaussian Kernel Weighted k-Nearest Neighbor and Extended Connectivity Fingerprints, Including Structural Fragment Analysis of Inhibitors versus Noninhibitors</title><source>MEDLINE</source><source>ACS Publications</source><creator>Jensen, Berith F ; Vind, Christian ; Brockhoff, Per B ; Refsgaard, Hanne H. F</creator><creatorcontrib>Jensen, Berith F ; Vind, Christian ; Brockhoff, Per B ; Refsgaard, Hanne H. F</creatorcontrib><description>Inhibition of cytochrome P450 (CYP) enzymes is unwanted because of the risk of severe side effects due to drug−drug interactions. We present two in silico Gaussian kernel weighted k-nearest neighbor models based on extended connectivity fingerprints that classify CYP2D6 and CYP3A4 inhibition. Data used for modeling consisted of diverse sets of 1153 and 1382 drug candidates tested for CYP2D6 and CYP3A4 inhibition in human liver microsomes. For CYP2D6, 82% of the classified test set compounds were predicted to the correct class. For CYP3A4, 88% of the classified compounds were correctly classified. CYP2D6 and CYP3A4 inhibition were additionally classified for an external test set on 14 drugs, and multidimensional scaling plots showed that the drugs in the external test set were in the periphery of the training sets. Furthermore, fragment analyses were performed and structural fragments frequent in CYP2D6 and CYP3A4 inhibitors and noninhibitors are presented.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm060333s</identifier><identifier>PMID: 17266202</identifier><identifier>CODEN: JMCMAR</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Cluster Analysis ; Cytochrome P-450 CYP2D6 - chemistry ; Cytochrome P-450 CYP2D6 Inhibitors ; Cytochrome P-450 CYP3A ; Cytochrome P-450 Enzyme Inhibitors ; Cytochrome P-450 Enzyme System - chemistry ; Databases, Factual ; Enzyme Inhibitors - chemistry ; Humans ; In Vitro Techniques ; Medical sciences ; Microsomes, Liver - drug effects ; Microsomes, Liver - enzymology ; Miscellaneous ; Models, Molecular ; Pharmaceutical Preparations - chemistry ; Pharmacology. Drug treatments ; Quantitative Structure-Activity Relationship</subject><ispartof>Journal of medicinal chemistry, 2007-02, Vol.50 (3), p.501-511</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-651cd0e14c36e02edc410698fbd748f39abb206da3925783925e61f8a542eea43</citedby><cites>FETCH-LOGICAL-a478t-651cd0e14c36e02edc410698fbd748f39abb206da3925783925e61f8a542eea43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm060333s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm060333s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18521546$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17266202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jensen, Berith F</creatorcontrib><creatorcontrib>Vind, Christian</creatorcontrib><creatorcontrib>Brockhoff, Per B</creatorcontrib><creatorcontrib>Refsgaard, Hanne H. F</creatorcontrib><title>In Silico Prediction of Cytochrome P450 2D6 and 3A4 Inhibition Using Gaussian Kernel Weighted k-Nearest Neighbor and Extended Connectivity Fingerprints, Including Structural Fragment Analysis of Inhibitors versus Noninhibitors</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Inhibition of cytochrome P450 (CYP) enzymes is unwanted because of the risk of severe side effects due to drug−drug interactions. We present two in silico Gaussian kernel weighted k-nearest neighbor models based on extended connectivity fingerprints that classify CYP2D6 and CYP3A4 inhibition. Data used for modeling consisted of diverse sets of 1153 and 1382 drug candidates tested for CYP2D6 and CYP3A4 inhibition in human liver microsomes. For CYP2D6, 82% of the classified test set compounds were predicted to the correct class. For CYP3A4, 88% of the classified compounds were correctly classified. CYP2D6 and CYP3A4 inhibition were additionally classified for an external test set on 14 drugs, and multidimensional scaling plots showed that the drugs in the external test set were in the periphery of the training sets. Furthermore, fragment analyses were performed and structural fragments frequent in CYP2D6 and CYP3A4 inhibitors and noninhibitors are presented.</description><subject>Biological and medical sciences</subject><subject>Cluster Analysis</subject><subject>Cytochrome P-450 CYP2D6 - chemistry</subject><subject>Cytochrome P-450 CYP2D6 Inhibitors</subject><subject>Cytochrome P-450 CYP3A</subject><subject>Cytochrome P-450 Enzyme Inhibitors</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Databases, Factual</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Medical sciences</subject><subject>Microsomes, Liver - drug effects</subject><subject>Microsomes, Liver - enzymology</subject><subject>Miscellaneous</subject><subject>Models, Molecular</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmacology. Drug treatments</subject><subject>Quantitative Structure-Activity Relationship</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV9v0zAUxSMEYmXwwBdAfgEJiYD_xUkeu24tFVUpdBOPkePctO4Se9jOtH5dPgnJWnUvSLzY0r0_nXPsE0VvCf5MMCVfdi0WmDHmn0UjklAc8wzz59EIY0pjKig7i155v8MYM0LZy-iMpFQIiuko-jM3aK0brSxaOai0CtoaZGs02Qerts62gFY8wYheCiRNhdiYo7nZ6lI_kjdemw2ayc57LQ36Bs5Ag36B3mwDVOg2XoJ04ANaDqPSukeRq4cApur3E2sM9J73OuzRtJcCd-e0Cf5Tb6KarhrU18F1KnRONmjq5KYFE9DYyGbvtR-iHuNY59E9ON95tLRGn4avoxe1bDy8Od7n0c306nryNV58n80n40UseZqFWCREVRgIV0wAplApTrDIs7qsUp7VLJdlSbGoJMtpkmbDCYLUmUw4BZCcnUcfDrp3zv7u-jcXrfYKmkYasJ0vRJYLnojsvyDJ04SSZAA_HkDlrPcO6qL_nFa6fUFwMTRfnJrv2XdH0a5soXoij1X3wPsjIL2STe2kUdo_cdngyUXPxQdO-wAPp710t4VIWZoU16t18eMy-blYX-TF7ElXKl_sbOf6Zvw_Av4FevnUWg</recordid><startdate>20070208</startdate><enddate>20070208</enddate><creator>Jensen, Berith F</creator><creator>Vind, Christian</creator><creator>Brockhoff, Per B</creator><creator>Refsgaard, Hanne H. F</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070208</creationdate><title>In Silico Prediction of Cytochrome P450 2D6 and 3A4 Inhibition Using Gaussian Kernel Weighted k-Nearest Neighbor and Extended Connectivity Fingerprints, Including Structural Fragment Analysis of Inhibitors versus Noninhibitors</title><author>Jensen, Berith F ; Vind, Christian ; Brockhoff, Per B ; Refsgaard, Hanne H. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-651cd0e14c36e02edc410698fbd748f39abb206da3925783925e61f8a542eea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological and medical sciences</topic><topic>Cluster Analysis</topic><topic>Cytochrome P-450 CYP2D6 - chemistry</topic><topic>Cytochrome P-450 CYP2D6 Inhibitors</topic><topic>Cytochrome P-450 CYP3A</topic><topic>Cytochrome P-450 Enzyme Inhibitors</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Databases, Factual</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Medical sciences</topic><topic>Microsomes, Liver - drug effects</topic><topic>Microsomes, Liver - enzymology</topic><topic>Miscellaneous</topic><topic>Models, Molecular</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmacology. Drug treatments</topic><topic>Quantitative Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Berith F</creatorcontrib><creatorcontrib>Vind, Christian</creatorcontrib><creatorcontrib>Brockhoff, Per B</creatorcontrib><creatorcontrib>Refsgaard, Hanne H. F</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Berith F</au><au>Vind, Christian</au><au>Brockhoff, Per B</au><au>Refsgaard, Hanne H. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico Prediction of Cytochrome P450 2D6 and 3A4 Inhibition Using Gaussian Kernel Weighted k-Nearest Neighbor and Extended Connectivity Fingerprints, Including Structural Fragment Analysis of Inhibitors versus Noninhibitors</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2007-02-08</date><risdate>2007</risdate><volume>50</volume><issue>3</issue><spage>501</spage><epage>511</epage><pages>501-511</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><coden>JMCMAR</coden><abstract>Inhibition of cytochrome P450 (CYP) enzymes is unwanted because of the risk of severe side effects due to drug−drug interactions. We present two in silico Gaussian kernel weighted k-nearest neighbor models based on extended connectivity fingerprints that classify CYP2D6 and CYP3A4 inhibition. Data used for modeling consisted of diverse sets of 1153 and 1382 drug candidates tested for CYP2D6 and CYP3A4 inhibition in human liver microsomes. For CYP2D6, 82% of the classified test set compounds were predicted to the correct class. For CYP3A4, 88% of the classified compounds were correctly classified. CYP2D6 and CYP3A4 inhibition were additionally classified for an external test set on 14 drugs, and multidimensional scaling plots showed that the drugs in the external test set were in the periphery of the training sets. Furthermore, fragment analyses were performed and structural fragments frequent in CYP2D6 and CYP3A4 inhibitors and noninhibitors are presented.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17266202</pmid><doi>10.1021/jm060333s</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2007-02, Vol.50 (3), p.501-511
issn 0022-2623
1520-4804
language eng
recordid cdi_proquest_miscellaneous_68964568
source MEDLINE; ACS Publications
subjects Biological and medical sciences
Cluster Analysis
Cytochrome P-450 CYP2D6 - chemistry
Cytochrome P-450 CYP2D6 Inhibitors
Cytochrome P-450 CYP3A
Cytochrome P-450 Enzyme Inhibitors
Cytochrome P-450 Enzyme System - chemistry
Databases, Factual
Enzyme Inhibitors - chemistry
Humans
In Vitro Techniques
Medical sciences
Microsomes, Liver - drug effects
Microsomes, Liver - enzymology
Miscellaneous
Models, Molecular
Pharmaceutical Preparations - chemistry
Pharmacology. Drug treatments
Quantitative Structure-Activity Relationship
title In Silico Prediction of Cytochrome P450 2D6 and 3A4 Inhibition Using Gaussian Kernel Weighted k-Nearest Neighbor and Extended Connectivity Fingerprints, Including Structural Fragment Analysis of Inhibitors versus Noninhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%20Prediction%20of%20Cytochrome%20P450%202D6%20and%203A4%20Inhibition%20Using%20Gaussian%20Kernel%20Weighted%20k-Nearest%20Neighbor%20and%20Extended%20Connectivity%20Fingerprints,%20Including%20Structural%20Fragment%20Analysis%20of%20Inhibitors%20versus%20Noninhibitors&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Jensen,%20Berith%20F&rft.date=2007-02-08&rft.volume=50&rft.issue=3&rft.spage=501&rft.epage=511&rft.pages=501-511&rft.issn=0022-2623&rft.eissn=1520-4804&rft.coden=JMCMAR&rft_id=info:doi/10.1021/jm060333s&rft_dat=%3Cproquest_cross%3E68964568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19752158&rft_id=info:pmid/17266202&rfr_iscdi=true