In Silico Prediction of Cytochrome P450 2D6 and 3A4 Inhibition Using Gaussian Kernel Weighted k-Nearest Neighbor and Extended Connectivity Fingerprints, Including Structural Fragment Analysis of Inhibitors versus Noninhibitors

Inhibition of cytochrome P450 (CYP) enzymes is unwanted because of the risk of severe side effects due to drug−drug interactions. We present two in silico Gaussian kernel weighted k-nearest neighbor models based on extended connectivity fingerprints that classify CYP2D6 and CYP3A4 inhibition. Data u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2007-02, Vol.50 (3), p.501-511
Hauptverfasser: Jensen, Berith F, Vind, Christian, Brockhoff, Per B, Refsgaard, Hanne H. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhibition of cytochrome P450 (CYP) enzymes is unwanted because of the risk of severe side effects due to drug−drug interactions. We present two in silico Gaussian kernel weighted k-nearest neighbor models based on extended connectivity fingerprints that classify CYP2D6 and CYP3A4 inhibition. Data used for modeling consisted of diverse sets of 1153 and 1382 drug candidates tested for CYP2D6 and CYP3A4 inhibition in human liver microsomes. For CYP2D6, 82% of the classified test set compounds were predicted to the correct class. For CYP3A4, 88% of the classified compounds were correctly classified. CYP2D6 and CYP3A4 inhibition were additionally classified for an external test set on 14 drugs, and multidimensional scaling plots showed that the drugs in the external test set were in the periphery of the training sets. Furthermore, fragment analyses were performed and structural fragments frequent in CYP2D6 and CYP3A4 inhibitors and noninhibitors are presented.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm060333s