Loss of renal function and microvascular blood flow after suprarenal aortic clamping and reperfusion (SPACR) above the superior mesenteric artery is greatly augmented compared with SPACR above the renal arteries

Objective Renal insufficiency continues to be a complication that can affect patients after treatment for suprarenal aneurysms and renal artery occlusive disease. To our knowledge, no data are available showing that suprarenal aortic clamping and reperfusion (SRACR) above the renal arteries (renal-S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vascular surgery 2007-02, Vol.45 (2), p.357-366
Hauptverfasser: Myers, Stuart I., MD, Wang, Li, BS, Myers, Daniel J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective Renal insufficiency continues to be a complication that can affect patients after treatment for suprarenal aneurysms and renal artery occlusive disease. To our knowledge, no data are available showing that suprarenal aortic clamping and reperfusion (SRACR) above the renal arteries (renal-SRACR) preserves renal function compared with SRACR above the superior mesenteric artery (SMA-SRACR). This study examined the hypothesis that SMA-SRACR–induced downregulation of renal blood flow and function is more severe than renal-SRACR owing to the addition of systemic oxygen-derived free radical (ODFR) release. Methods Male Sprague-Dawley rats (about 350 g) were anesthetized and microdialysis probes or laser Doppler fibers were inserted into the renal cortex (depth of 2 mm) and into the renal medulla (depth of 4 mm). Laser Doppler blood flow was continuously monitored, and the microdialysis probes were connected to a syringe pump and perfused in vivo at 3 μL/min with lactated Ringer’s solution. Results SMA-SRACR and Renal-SRACR decreased medullary and cortical blood flow and nitric oxide (NO) synthesis. SMA-SRACR downregulated cortical inducible NO synthase, whereas renal-SRACR did not. The cortex and medulla responded to the decreased blood flow and NO synthesis by increasing in prostaglandin E2 synthesis, which was due to increased cyclooxygenase-2 content. Superoxide dismutase restored SMA-SRACR (but not renal-SRACR) cortical and medullary NO synthesis, suggesting that ODFRs generated during mesenteric ischemia–reperfusion were one of the systemic mechanisms contributing to decreased renal NO synthesis in the SMA-SRACR model. The 90% decrease in creatinine clearance after SMA-SRACR was greater than the 60% decrease after renal-SRACR. Conclusions These data show that NO is important in maintaining renal cortical and medullary blood flow and NO synthesis after renal and SMA-SRACR. These data also suggest that in addition to the renal ischemia–reperfusion caused by both models, SMA SRACR induces mesenteric ischemia–reperfusion, resulting in the generation of ODFRs, which contribute to decreased renal cortical and medullary NO synthesis. Maintaining splanchnic blood flow or attempting to keep SRACR below the SMA level may be helpful in developing strategies to minimize the renal injury after SRACR.
ISSN:0741-5214
1097-6809
DOI:10.1016/j.jvs.2006.10.045